scholarly journals miR-27a is highly expressed in H1650 cancer stem cells and regulates proliferation, migration, and invasion

2018 ◽  
Vol 14 (7) ◽  
pp. 1004 ◽  
Author(s):  
Zhixue Liu ◽  
Wenwen Luo ◽  
Deyi Zhang ◽  
Shumin Ma ◽  
Chenyao Wang ◽  
...  
2021 ◽  
Author(s):  
Ningwei Fu ◽  
Ning Fan ◽  
Wenchao Luo ◽  
Lijia Lv ◽  
Jing Li ◽  
...  

Abstract Purpose: TFEB is a key regulator of autophagy-lysosomal biogenesis pathways, while its dysregulation is highly prevalent in various human cancers, but the specific contribution to breast cancer remains poorly understood. The main purpose of this study is to explore the role of TFEB in breast cancer proliferation, metastasis and maintaining breast cancer stem cells (BCSCs) traits, thus uncovering its underlying mechanism.Methods: Bioinformatics, western blotting and immunohistochemical staining were applied to analyze the expression of TFEB in breast cancer. Stable down-regulation TFEB cells were established in MCF-7 and MDA-MB-231 breast cancer cell lines. MTT, clone formation, wound healing, transwell and 3D tumor invasion assays were used to evaluate the proliferation, migration and invasion ability of breast cancer cells. Mammosphere formation, immunocytochemical (ICC) staining were used to detect the effect of down-regulating TFEB on breast cancer stem cells. Results: we demonstrated that higher expression of TFEB was found in breast cancer. TFEB depletion had inhibitory effects on cellular proliferation, migration and invasion of breast cancer cells. Moreover, knockdown TFEB decreased mammosphere formation ability of BCSCs and expression of cancer stem cell markers. Autophagy-lysosomal related proteins were decreased by down regulation of TFEB. Conclusion: we uncovered a critical role of TFEB in breast cancer proliferation and metastasis, and BCSCs self-renewal and stemness. The underlying mechanisms involve in maintaining BCSCs traits, and dysregulating lysosome functions.


Cancers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 4350
Author(s):  
Jessica Castro ◽  
Giusy Tornillo ◽  
Gerardo Ceada ◽  
Beatriz Ramos-Neble ◽  
Marlon Bravo ◽  
...  

Despite the significant advances in cancer research made in recent years, this disease remains one of the leading causes of death worldwide. In part, this is due to the fact that after therapy, a subpopulation of self-renewing tumor cells can survive and promote cancer relapse, resistance to therapies and metastasis. Targeting these cancer stem cells (CSCs) is therefore essential to improve the clinical outcome of cancer patients. In this sense, multi-targeted drugs may be promising agents targeting CSC-associated multifocal effects. We have previously constructed different human pancreatic ribonuclease (RNase) variants that are cytotoxic for tumor cells due to a non-classical nuclear localization signal introduced in their sequence. These cytotoxic RNases affect the expression of multiple genes involved in deregulated metabolic and signaling pathways in cancer cells and are highly cytotoxic for multidrug-resistant tumor cell lines. Here, we show that these cytotoxic nuclear-directed RNases are highly selective for tumor cell lines grown in 3D, inhibit CSCs’ development and diminish the self-renewal capacity of the CSCs population. Moreover, these human RNase variants reduce the migration and invasiveness of highly invasive breast cancer cells and downregulate N-cadherin expression.


2019 ◽  
Vol 13 ◽  
pp. 117822341987362 ◽  
Author(s):  
Namita Kundu ◽  
Xinrong Ma ◽  
Regine Brox ◽  
Xiaoxuan Fan ◽  
Tyler Kochel ◽  
...  

We are seeking to identify molecular targets that are relevant to breast cancer cells with stem-like properties. There is growing evidence that cancer stem cells (CSCs) are supported by inflammatory mediators expressed in the tumor microenvironment. The chemokine receptor CXCR3 binds the interferon-γ-inducible, ELR-negative CXC chemokines CXCL9, CXCL10, and CXCL11 and malignant cells have co-opted this receptor to promote tumor cell migration and invasion. There are 2 major isoforms of CXCR3: CXCR3A and CXCR3B. The latter is generated from alternative splicing and results in a protein with a longer N-terminal domain. CXCR3 isoform A is generally considered to play a major role in tumor metastasis. When the entire tumor cell population is examined, CXCR3 isoform B is usually detected at much lower levels than CXCR3A and for this, and other reasons, was not considered to drive tumor progression. We have shown that CXCR3B is significantly upregulated in the subpopulation of breast CSCs in comparison with the bulk tumor cell population in 3 independent breast cancer cell lines (MDA-MB-231, SUM159, and T47D). Modulation of CXCR3B levels by knock in strategies increases CSC populations identified by aldehyde dehydrogenase activity or CD44+CD24− phenotype as well as tumorsphere-forming capacity. The reverse is seen when CXCR3B is gene-silenced. CXCL11 and CXCL10 directly induce CSC. We also report that novel CXCR3 allosteric modulators BD064 and BD103 prevent the induction of CSCs. BD103 inhibited experimental metastasis. This protective effect is associated with the reversal of CXCR3 ligand-mediated activation of STAT3, ERK1/2, CREB, and NOTCH1 pathways. We propose that CXCR3B, expressed on CSC, should be explored further as a novel therapeutic target.


Biomolecules ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 79 ◽  
Author(s):  
Noothan Jyothi Satheesh ◽  
Samson Mathews Samuel ◽  
Dietrich Büsselberg

Cancer remains one of the most feared and dreaded diseases in this era of modern medicine, claiming the lives of many, and affecting the quality of life of several others around the globe despite major advances in the diagnosis, treatment, palliative care and the immense resources invested into cancer research. While research in cancer has largely focused on the neoplasm/tumor and the cancerous cells that make up the tumor, more recently, the existence, proliferation, differentiation, migration and invasion of cancer stem cells (CSCs) and the role that CSCs play in tumor initiation, progression, metastasis, drug resistance and relapse/recurrence of the disease has gained widespread interest in cancer research. Although the conventional therapeutic approaches such as surgery, chemotherapy and radiation therapy are effective cancer treatments, very often these treatment modalities fail to target the CSCs, which then later become the source of disease recurrence. A majority of the anti-cancer agents target rapidly dividing cancer cells and normal cells and hence, have side effects that are not expected. Targeting CSCs remains a challenge due to their deviant nature with a low proliferation rate and increased drug resistance mechanism. Ascorbic acid/Vitamin C (Vit.C), a potent antioxidant, is a cofactor for several biosynthetic and gene regulatory enzymes and a vital contributor to immune defense of the body, and was found to be deficient in patients with advanced stages of cancer. Vit.C has gained importance in the treatment of cancer due to its ability to modulate the redox status of the cell and influence epigenetic modifications and significant roles in HIF1α signaling. Studies have reported that intravenous administration of Vit.C at pharmacological doses selectively kills tumor cells and targets CSCs when administered along with chemotherapeutic drugs. In the current article, we provide an in-depth review of how Vit.C plays an important role in targeting CSCs and its possible use as an adjuvant, neoadjuvant or co-treatment in the treatment of cancers.


PLoS ONE ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. e0230230
Author(s):  
Haiyan Wen ◽  
Min Qian ◽  
Jing He ◽  
Meihui Li ◽  
Qing Yu ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Xiao-Hai Song ◽  
Xin-Zu Chen ◽  
Xiao-Long Chen ◽  
Kai Liu ◽  
Wei-Han Zhang ◽  
...  

Objectives. This preliminary study is aimed at enriching and isolating peritoneal metastatic cancer stem cells (pMCSCs) of gastric cancer and assessing their epithelial-mesenchymal transition (EMT) phenotype and invasiveness. Methods. Cancer stem cells of human gastric cancer (CSC-hGC) were previously isolated and transfected with green fluorescent protein and luciferase genes to validate the mouse model of peritoneal metastasis established via transplantation. The first and second generations ([G1] and [G2], respectively) of pMCSCs were isolated from intraperitoneally transplanted CSC-hGC (pMCSC-tGC) by spherical culture. CSC and EMT-related markers and regulators in the two generations of intraperitoneally transplanted tumors were examined by immunohistochemistry, immunofluorescence staining, and quantitative PCR. Cell mobility was examined by a transwell assay. Results. The nude mouse model of intraperitoneally transplanted CSC-hGC was successful in establishing sequential formation of peritoneal tumors and enrichment of pMCSCs. CD44 and CD54 were consistently expressed in the two generations of transplanted tumors. In vitro cell (migration) assays and immunocytofluorescence assays showed that in pMCSC-tGC[G2], E-cad, Survivin, and Vimentin expression was stable; α-SMA expression was decreased; and OVOL2, GRHL2, and ZEB1 expression was increased. PCR analysis indicated that in pMCSC-tGC[G2], the mRNA expression of E-cad, α-SMA, MMP9, MMP2, and Vimentin was downregulated, while that of ZEB1, OVOL2, and GRHL2 was upregulated. In vivo tumor (homing) assays and immunohistochemical assays demonstrated that in pMCSC-tGC[G2], E-cad and Snail were upregulated, while α-SMA was downregulated. The numbers of migrated and invaded pMCSC-tGC[G1] and pMCSC-tGC[G2] were significantly higher than those of CSC-hGC in migration and invasion assays. Conclusions. pMCSCs might be a specific subpopulation that can be sequentially enriched by intraperitoneal transplantation. pMCSCs exhibited a tendency towards partial mesenchymal-epithelial transition, enhancing their invasiveness during homing and the formation of peritoneal tumors. However, these preliminary findings require validation in further experiments.


Sign in / Sign up

Export Citation Format

Share Document