scholarly journals Network Analysis of Circular Permutations in Multidomain Proteins Reveals Functional Linkages for Uncharacterized Proteins

2014 ◽  
Vol 13s5 ◽  
pp. CIN.S14059
Author(s):  
Donald Adjeroh ◽  
Yue Jiang ◽  
Bing-Hua Jiang ◽  
Jie Lin

Various studies have implicated different multidomain proteins in cancer. However, there has been little or no detailed study on the role of circular multidomain proteins in the general problem of cancer or on specific cancer types. This work represents an initial attempt at investigating the potential for predicting linkages between known cancer-associated proteins with uncharacterized or hypothetical multidomain proteins, based primarily on circular permutation (CP) relationships. First, we propose an efficient algorithm for rapid identification of both exact and approximate CPs in multidomain proteins. Using the circular relations identified, we construct networks between multidomain proteins, based on which we perform functional annotation of multidomain proteins. We then extend the method to construct subnetworks for selected cancer subtypes, and performed prediction of potential linkages between uncharacterized multidomain proteins and the selected cancer types. We include practical results showing the performance of the proposed methods.

Life ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 72
Author(s):  
Klaudia Staszak ◽  
Izabela Makałowska

This review summarizes the knowledge about retrogenes in the context of cancer and evolution. The retroposition, in which the processed mRNA from parental genes undergoes reverse transcription and the resulting cDNA is integrated back into the genome, results in additional copies of existing genes. Despite the initial misconception, retroposition-derived copies can become functional, and due to their role in the molecular evolution of genomes, they have been named the “seeds of evolution”. It is convincing that retrogenes, as important elements involved in the evolution of species, also take part in the evolution of neoplastic tumors at the cell and species levels. The occurrence of specific “resistance mechanisms” to neoplastic transformation in some species has been noted. This phenomenon has been related to additional gene copies, including retrogenes. In addition, the role of retrogenes in the evolution of tumors has been described. Retrogene expression correlates with the occurrence of specific cancer subtypes, their stages, and their response to therapy. Phylogenetic insights into retrogenes show that most cancer-related retrocopies arose in the lineage of primates, and the number of identified cancer-related retrogenes demonstrates that these duplicates are quite important players in human carcinogenesis.


Biomolecules ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 879
Author(s):  
Yves St-Pierre

It has been almost 25 years since the discovery of galectin-7. This member of the galectin family has attracted interest from many working in the cancer field given its highly restricted expression profile in epithelial cells and the fact that cancers of epithelial origin (carcinoma) are among the most frequent and deadly cancer subtypes. Initially described as a p53-induced gene and associated with apoptosis, galectin-7 is now recognized as having a protumorigenic role in many cancer types. Several studies have indeed shown that galectin-7 is associated with aggressive behavior of cancer cells and induces expression of MMP-9, a member of the matrix metalloproteinases (MMP) family known to confer invasive behavior to cancer cells. It is therefore not surprising that many studies have examined its relationships with p53 and MMP-9. However, the relationships between galectin-7 and p53 and MMP-9 are not always clear. This is largely because p53 is often mutated in cancer cells and such mutations drastically change its functions and, consequently, its association with galectin-7. In this review, we discuss the functional relationships between galectin-7, p53 and MMP-9 and reconcile some apparently contradictory observations. A better understanding of these relationships will help to develop a working hypothesis and model that will provide the basis for further research in the hope of establishing a new paradigm for tackling the role of galectin-7 in cancer.


2013 ◽  
Vol 33 (4) ◽  
Author(s):  
Felipe C. Beckedorff ◽  
Murilo Sena Amaral ◽  
Carlos Deocesano-Pereira ◽  
Sergio Verjovski-Almeida

LncRNAs (long non-coding RNAs) have emerged as key molecular players in the regulation of gene expression in different biological processes. Their involvement in epigenetic processes includes the recruitment of histone-modifying enzymes and DNA methyltransferases, leading to the establishment of chromatin conformation patterns that ultimately result in the fine control of genes. Some of these genes are related to tumorigenesis and it is well documented that the misregulation of epigenetic marks leads to cancer. In this review, we highlight how some of the lncRNAs implicated in cancer are involved in the epigenetic control of gene expression. While very few lncRNAs have already been identified as players in determining the cancer-survival outcome in a number of different cancer types, for most of the lncRNAs associated with epigenetic regulation only their altered pattern of expression in cancer is demonstrated. Thanks to their tissue-specificity features, lncRNAs have already been proposed as diagnostic markers in specific cancer types. We envision the discovery of a wealth of novel spliced and unspliced intronic lncRNAs involved in epigenetic networks or in highly location-specific epigenetic control, which might be predominantly altered in specific cancer subtypes. We expect that the characterization of new lncRNA (long non-coding RNA)–protein and lncRNA–DNA interactions will contribute to the discovery of potential lncRNA targets for use in therapies against cancer.


Author(s):  
K. . Togawa

Agricultural workers can be exposed to a wide variety of agents (e.g. pesticides), some of which may have adverse health effects, such as cancer. To study the health effects of agricultural exposures, an international consortium of agricultural cohort studies, AGRICOH, was established. The present analysis compared cancer incidence between the AGRICOH cohorts and the general population and found lower overall cancer incidence in the AGRICOH cohorts, with some variation across cohorts for specific cancer types. The observed lower cancer incidence may be due to healthy worker bias or lower prevalence of risk factors in the agricultural populations. Further analysis is underway.


Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3314
Author(s):  
Tomasz Kowalczyk ◽  
Joanna Kisluk ◽  
Karolina Pietrowska ◽  
Joanna Godzien ◽  
Miroslaw Kozlowski ◽  
...  

Identification of the NSCLC subtype at an early stage is still quite sophisticated. Metabolomics analysis of tissue and plasma of NSCLC patients may indicate new, and yet unknown, metabolic pathways active in the NSCLC. Our research characterized the metabolomics profile of tissue and plasma of patients with early and advanced NSCLC stage. Samples were subjected to thorough metabolomics analyses using liquid chromatography-mass spectrometry (LC-MS) technique. Tissue and/or plasma samples from 137 NSCLC patients were analyzed. Based on the early stage tissue analysis, more than 200 metabolites differentiating adenocarcinoma (ADC) and squamous cell lung carcinoma (SCC) subtypes as well as normal tissue, were identified. Most of the identified metabolites were amino acids, fatty acids, carnitines, lysoglycerophospholipids, sphingomyelins, plasmalogens and glycerophospholipids. Moreover, metabolites related to N-acyl ethanolamine (NAE) biosynthesis, namely glycerophospho (N-acyl) ethanolamines (GP-NAE), which discriminated early-stage SCC from ADC, have also been identified. On the other hand, the analysis of plasma of chronic obstructive pulmonary disease (COPD) and NSCLC patients allowed exclusion of the metabolites related to the inflammatory state in lungs and the identification of compounds (lysoglycerophospholipids, glycerophospholipids and sphingomyelins) truly characteristic to cancer. Our results, among already known, showed novel, thus far not described, metabolites discriminating NSCLC subtypes, especially in the early stage of cancer. Moreover, the presented results also indicated the activity of new metabolic pathways in NSCLC. Further investigations on the role of NAE biosynthesis pathways in the early stage of NSCLC may reveal new prognostic and diagnostic targets.


Author(s):  
Tania Ho-Plágaro ◽  
Raúl Huertas ◽  
María I Tamayo-Navarrete ◽  
Elison Blancaflor ◽  
Nuria Gavara ◽  
...  

Abstract The formation of arbuscular mycorrhizal (AM) symbiosis requires plant root host cells to undergo major structural and functional reprogramming in order to house the highly branched AM fungal structure for the reciprocal exchange of nutrients. These morphological modifications are associated with cytoskeleton remodelling. However, molecular bases and the role of microtubules (MTs) and actin filament dynamics during AM formation are largely unknown. In this study, the tomato tsb gene, belonging to a Solanaceae group of genes encoding MT-associated proteins for pollen development, was found to be highly expressed in root cells containing arbuscules. At earlier stages of mycorrhizal development, tsb overexpression enhanced the formation of highly developed and transcriptionally active arbuscules, while tsb silencing hampers the formation of mature arbuscules and represses arbuscule functionality. However, at later stages of mycorrhizal colonization, tsb OE roots accumulate fully developed transcriptionally inactive arbuscules, suggesting that the collapse and turnover of arbuscules might be impaired by TSB accumulation. Imaging analysis of the MT cytoskeleton in cortex root cells overexpressing tsb revealed that TSB is involved in MT-bundling. Taken together, our results provide unprecedented insights into the role of novel MT-associated protein in MT rearrangements throughout the different stages of the arbuscule life cycle.


2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 741-741
Author(s):  
David Lombard

Abstract Sirtuins are NAD+-dependent deacylases that regulate diverse cellular processes such as metabolic homeostasis and genomic integrity. Mammals possess seven sirtuin family members, SIRT1-SIRT7, that display diverse subcellular localization patterns, catalytic activities, protein targets, and biological functions. Three sirtuins, SIRT3, SIRT4, and SIRT5, are primarily located in the mitochondrial matrix. SIRT5 is a very inefficient deacetylase, instead removing negatively charged post-translational modifications (succinyl, glutaryl, and malonyl groups) from lysines of its target proteins, in mitochondria and throughout the cell. SIRT5 plays only modest known roles in normal physiology, with its major functions occurring in the heart under stress conditions. In contrast, in specific cancer types, including melanoma, we have identified a major pro-survival role for SIRT5. We have traced this function of SIRT5 to novel roles for this protein in regulating chromatin biology. New insights into mechanisms of SIRT5 action in cancer, and in normal myocardium, will be discussed.


Author(s):  
Jonathon A Ditlev

Abstract Liquid‒liquid phase separation (LLPS) of biomolecules has emerged as an important mechanism that contributes to cellular organization. Phase separated biomolecular condensates, or membrane-less organelles, are compartments composed of specific biomolecules without a surrounding membrane in the nucleus and cytoplasm. LLPS also occurs at membranes, where both lipids and membrane-associated proteins can de-mix to form phase separated compartments. Investigation of these membrane-associated condensates using in vitro biochemical reconstitution and cell biology has provided key insights into the role of phase separation in membrane domain formation and function. However, these studies have generally been limited by available technology to study LLPS on model membranes and the complex cellular environment that regulates condensate formation, composition, and function. Here, I briefly review our current understanding of membrane-associated condensates, establish why LLPS can be advantageous for certain membrane-associated condensates, and offer a perspective for how these condensates may be studied in the future.


Sign in / Sign up

Export Citation Format

Share Document