scholarly journals Co-expression Network Analysis of Human lncRNAs and Cancer Genes

2014 ◽  
Vol 13s5 ◽  
pp. CIN.S14070 ◽  
Author(s):  
Steven B. Cogill ◽  
Liangjiang Wang

We used gene co-expression network analysis to functionally annotate long noncoding RNAs (lncRNAs) and identify their potential cancer associations. The integrated microarray data set from our previous study was used to extract the expression profiles of 1,865 lncRNAs. Known cancer genes were compiled from the Catalogue of Somatic Mutations in Cancer and UniProt databases. Co-expression analysis identified a list of previously uncharacterized lncRNAs that showed significant correlation in expression with core cancer genes. To further annotate the lncRNAs, we performed a weighted gene co-expression network analysis, which resulted in 37 co-expression modules. Three biologically interesting modules were analyzed in depth. Two of the modules showed relatively high expression in blood and brain tissues, whereas the third module was found to be downregulated in blood cells. Hub lncRNA genes and enriched functional annotation terms were identified within the modules. The results suggest the utility of this approach as well as potential roles of uncharacterized lncRNAs in leukemia and neuroblastoma.

2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Liang Tang ◽  
Lan Liu ◽  
Guangyi Li ◽  
Pengcheng Jiang ◽  
Yan Wang ◽  
...  

Alzheimer’s disease (AD), characterized by memory loss, cognitive decline, and dementia, is a progressive neurodegenerative disease. Although the long noncoding RNAs (lncRNAs) have recently been identified to play a role in the pathogenesis of AD, the specific effects of lncRNAs in AD remain unclear. In present study, we have investigated the expression profiles of lncRNAs in hippocampal of intranasal LPS-mediated Alzheimer’s disease models in mice by microarray method. A total of 395 lncRNAs and 123 mRNAs was detected to express differently in AD models and controls (>2.0 folds,p<0.05). The microarray expression was validated by Quantitative Real-Time-PCR (qRT-PCR). The pathway analysis showed the mRNAs that correlated with lncRNAs were involved in inflammation, apoptosis, and nervous system related pathways. The lncRNA-TFs network analysis suggested the lncRNAs were mostly regulated by HMGA2, ONECUT2, FOXO1, and CDC5L. Additionally, lncRNA-target-TFs network analysis indicated the FOXL1, CDC5L, ONECUT2, and CDX1 to be the TFs most likely to regulate the production of these lncRNAs. This is the first study to investigate lncRNAs expression pattern in intranasal LPS-mediated Alzheimer’s disease model in mice. And these results may facilitate the understanding of the pathogenesis of AD targeting lncRNAs.


2007 ◽  
Vol 32 (1) ◽  
pp. 154-159 ◽  
Author(s):  
Li Li ◽  
Amitabha Chaudhuri ◽  
John Chant ◽  
Zhijun Tang

We have devised a novel analysis approach, percentile analysis for differential gene expression (PADGE), for identifying genes differentially expressed between two groups of heterogeneous samples. PADGE was designed to compare expression profiles of sample subgroups at a series of percentile cutoffs and to examine the trend of relative expression between sample groups as expression level increases. Simulation studies showed that PADGE has more statistical power than t-statistics, cancer outlier profile analysis (COPA) (Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW, Varambally S, Cao X, Tchinda J, Kuefer R, Lee C, Montie JE, Shah RB, Pienta KJ, Rubin MA, Chinnaiyan AM. Science 310: 644–648, 2005), and kurtosis (Teschendorff AE, Naderi A, Barbosa-Morais NL, Caldas C. Bioinformatics 22: 2269–2275, 2006). Application of PADGE to microarray data sets in tumor tissues demonstrated its utility in prioritizing cancer genes encoding potential therapeutic targets or diagnostic markers. A web application was developed for researchers to analyze a large gene expression data set from heterogeneous biological samples and identify differentially expressed genes between subsets of sample classes using PADGE and other available approaches. Availability: http://www.cgl.ucsf.edu/Research/genentech/padge/ .


2012 ◽  
Vol 11 ◽  
pp. CIN.S9542 ◽  
Author(s):  
Niklaus Fankhauser ◽  
Igor Cima ◽  
Peter Wild ◽  
Wilhelm Krek

Mutations in cancer-causing genes induce changes in gene expression programs critical for malignant cell transformation. Publicly available gene expression profiles produced by modulating the expression of distinct cancer genes may therefore represent a rich resource for the identification of gene signatures common to seemingly unrelated cancer genes. We combined automatic retrieval with manual validation to obtain a data set of high-quality gene microarray profiles. This data set was used to create logical models of the signaling events underlying the observed expression changes produced by various cancer genes and allowed to uncover unknown and verifiable interactions. Data clustering revealed novel sets of gene expression profiles commonly regulated by distinct cancer genes. Our method allows retrieval of significant new information and testable hypotheses from a pool of deposited cancer gene expression experiments that are otherwise not apparent or appear insignificant from single measurements. The complete results are available through a web-application at http://biodata.ethz.ch/cgi-bin/geologic .


2018 ◽  
Author(s):  
Romana Ishrat

AbstractBackgroundTuberculosis (TB) is a deadly transmissible disease that can infect almost any body-part of the host but is mostly infect the lungs. It is one of the top 10 causes of death worldwide. In the 30 high TB burden countries, 87% of new TB cases occurred in 2016. Seven countries: India, Indonesia, China, Philippines, Pakistan, Nigeria, and South Africa accounted for 64% of the new TB cases. To stop the infection and progression of the disease, early detection of TB is important. In our study, we used microarray data set and compared the gene expression profiles obtained from blood samples of patients with different datasets of Healthy control, Latent infection, Active TB and performed network-based analysis of DEGs to identify potential biomarker.ObjectivesWe want to observe the transition of genes from normal condition to different stages of the TB and identify, annotate those genes/pathways/processes that play key role in the progression of TB disease during its cyclic interventions in human body.ResultsWe identified 319 genes that are differentially expressed in various stages of TB (Normal to LTTB, Normal to Active TB and LTTB to active TB) and allocated to pathways from multiple databases which comprised of curated class of associated genes. These pathway’s importance was then evaluated according to the no. of DEGs present in the pathway and these genes show the broad spectrum of processes that take part in every state. In addition, we studied the regulatory networks of these classified genes, network analysis does consider the interactions between genes (specific for TB) or proteins provide us new facts about TB disease, which in turn can be used for potential biomarkers identification. We identified total 29 biomarkers from various comparison groups of TB stages in which 14 genes are over expressed as host responses against pathogen, but 15 genes are down regulated that means these genes has allowed the process of host defense to cease and give time to pathogen for its progression.ConclusionsThis study revealed that gene-expression profiles can be used to identify and classified the genes on stage specific pattern among normal, LTTB and active TB and network modules associated with various stages of TB were elucidated, which in turn provided a basis for the identification of potential pathways and key regulatory genes that may be involved in progression of TB disease.


Author(s):  
Giovanni Coppola ◽  
Kellen Winden ◽  
Genevieve Konopka ◽  
Fuying Gao ◽  
Daniel Geschwind

Genes ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 25
Author(s):  
He-Gang Chen ◽  
Xiong-Hui Zhou

Drug repurposing/repositioning, which aims to find novel indications for existing drugs, contributes to reducing the time and cost for drug development. For the recent decade, gene expression profiles of drug stimulating samples have been successfully used in drug repurposing. However, most of the existing methods neglect the gene modules and the interactions among the modules, although the cross-talks among pathways are common in drug response. It is essential to develop a method that utilizes the cross-talks information to predict the reliable candidate associations. In this study, we developed MNBDR (Module Network Based Drug Repositioning), a novel method that based on module network to screen drugs. It integrated protein–protein interactions and gene expression profile of human, to predict drug candidates for diseases. Specifically, the MNBDR mined dense modules through protein–protein interaction (PPI) network and constructed a module network to reveal cross-talks among modules. Then, together with the module network, based on existing gene expression data set of drug stimulation samples and disease samples, we used random walk algorithms to capture essential modules in disease development and proposed a new indicator to screen potential drugs for a given disease. Results showed MNBDR could provide better performance than popular methods. Moreover, functional analysis of the essential modules in the network indicated our method could reveal biological mechanism in drug response.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Qi Wu ◽  
Yiming Luo ◽  
Xiaoyong Wu ◽  
Xue Bai ◽  
Xueling Ye ◽  
...  

Abstract Background Night-break (NB) has been proven to repress flowering of short-day plants (SDPs). Long-noncoding RNAs (lncRNAs) play key roles in plant flowering. However, investigation of the relationship between lncRNAs and NB responses is still limited, especially in Chenopodium quinoa, an important short-day coarse cereal. Results In this study, we performed strand-specific RNA-seq of leaf samples collected from quinoa seedlings treated by SD and NB. A total of 4914 high-confidence lncRNAs were identified, out of which 91 lncRNAs showed specific responses to SD and NB. Based on the expression profiles, we identified 17 positive- and 7 negative-flowering lncRNAs. Co-expression network analysis indicated that 1653 mRNAs were the common targets of both types of flowering lncRNAs. By mapping these targets to the known flowering pathways in model plants, we found some pivotal flowering homologs, including 2 florigen encoding genes (FT (FLOWERING LOCUS T) and TSF (TWIN SISTER of FT) homologs), 3 circadian clock related genes (EARLY FLOWERING 3 (ELF3), LATE ELONGATED HYPOCOTYL (LHY) and ELONGATED HYPOCOTYL 5 (HY5) homologs), 2 photoreceptor genes (PHYTOCHROME A (PHYA) and CRYPTOCHROME1 (CRY1) homologs), 1 B-BOX type CONSTANS (CO) homolog and 1 RELATED TO ABI3/VP1 (RAV1) homolog, were specifically affected by NB and competed by the positive and negative-flowering lncRNAs. We speculated that these potential flowering lncRNAs may mediate quinoa NB responses by modifying the expression of the floral homologous genes. Conclusions Together, the findings in this study will deepen our understanding of the roles of lncRNAs in NB responses, and provide valuable information for functional characterization in future.


Author(s):  
V.T Priyanga ◽  
J.P Sanjanasri ◽  
Vijay Krishna Menon ◽  
E.A Gopalakrishnan ◽  
K.P Soman

The widespread use of social media like Facebook, Twitter, Whatsapp, etc. has changed the way News is created and published; accessing news has become easy and inexpensive. However, the scale of usage and inability to moderate the content has made social media, a breeding ground for the circulation of fake news. Fake news is deliberately created either to increase the readership or disrupt the order in the society for political and commercial benefits. It is of paramount importance to identify and filter out fake news especially in democratic societies. Most existing methods for detecting fake news involve traditional supervised machine learning which has been quite ineffective. In this paper, we are analyzing word embedding features that can tell apart fake news from true news. We use the LIAR and ISOT data set. We churn out highly correlated news data from the entire data set by using cosine similarity and other such metrices, in order to distinguish their domains based on central topics. We then employ auto-encoders to detect and differentiate between true and fake news while also exploring their separability through network analysis.


Sign in / Sign up

Export Citation Format

Share Document