BIOLOGICAL, PHYSICAL AND CHEMICAL CHANGES IN STORED FABABEANS

1979 ◽  
Vol 59 (4) ◽  
pp. 991-999 ◽  
Author(s):  
H. A. H. WALLACE ◽  
G. E. LALIBERTE ◽  
B. M. FRASER ◽  
P. L. SHOLBERG ◽  
W. E. MUIR ◽  
...  

Two lots of frost-damaged fababeans of low germinability, high bacterial infection, and above-normal free fatty acid (FAV) were stored as a single bulk for 12 mo in 1974–75. A brief period of biological heating occurred during June-July 1975 in the upper lot which had a moisture content of 15–17.8% as compared to 13.2–16.2% in the lower lot. In both lots bacterial infection decreased, and was accompanied by increased levels of intergranular CO2, FAV, Aspergillus glaucus and later by A. flavus. In the heated upper lot, A. candidus, A. nidulans and Cephalosporium also occurred. A third lot of bin-stored, non-frosted fababeans of high germinability, low bacterial infection, average FAV and 13.8–14.2% moisture content served as a control during 1975–77 and showed few changes in physical and chemical variables; its Penicillium contamination, however, increased. At the bottom of the bin leakage of rain water resulted in seed rot associated with incidence of Scopulariopsis, Gliocladium, Streptomyces and in drier areas Penicillium and the A. glaucus group. Rotten fababeans were heavily infested by mites, mostly Acarus immobilis.

1978 ◽  
Vol 29 (1) ◽  
pp. 81 ◽  
Author(s):  
BM El-Zeftawi

The pre- and post-harvest changes of seven different avocado cultivars were determined and evaluated as indicators of maturity. All cultivars had similar trends in their growth. These trends continued during development, accompanied by reductions in moisture and free fatty acid contents, increases in oil content, and variable changes in ash content. Decreases in moisture content during maturity were negatively correlated with oil content. A relationship was found between oil content and seed weight. It is suggested that the moisture content and/or seed weight could be used by the growers to estimate oil content and therefore the best time for picking. Oil content (Y) could be calculated from one of the following equations: Y = 0.19x – 1.57 where x is the seed weight (g); or Y = 90.87 – 0.77x, where x is the percentage of moisture in the mesocarp. Taking into account the differences between the cultivars and the limited nature of the results, and on the basis of a minimum oil content of 8% as the crude fat extract, it is suggested that under local conditions, Zutano could best be picked in May, Fuerte in July, and Hazzard in September, with other cultivars to be picked between July and September. In this way a continuous supply of avocado from May to September, and even later, could be provided.


IAWA Journal ◽  
1986 ◽  
Vol 7 (3) ◽  
pp. 243-250 ◽  
Author(s):  
Juliet Prior ◽  
K. L. Alvin

Air-dried and saturated cubes of fully developed wood of Dichrostachys cinerea (Leguminosae) and Salix subserrata (Salicaceae) were charred for 60 minutes at 400°C. An initial increase in moisture content caused few structural alterations in Salix but in Dichrostachys it resulted in considerable ray distension and massive deformation of non-gelatinous fibres. An attempt is made to correlate these observations with the physical and chemical changes known to occur during wood pyrolysis.


2012 ◽  
Vol 12 (1) ◽  
pp. 59 ◽  
Author(s):  
Dewa G Katja

KUALITAS MINYAK BUNGA MATAHARI KOMERSIAL DAN MINYAK HASIL EKSTRAKSI BIJI BUNGA MATAHARI (Helianthus annuus L.) ABSTRAK Minyak komersial dan minyak hasil ekstrasi dari biji bunga matahari melalui uji kadar air, kadar asam lemak bebas, bilangan peroksida. Analisis hasil ekstrak biji bunga matahari diperoleh kadar air 0,43%, kadar asam lemak bebas 0,47% dan bilangan persoksida 5,22 mek/kg. analisis minyak komersial diperoleh kadar air 0,21%, kadar asam lemak bebas 0,28% dan bilangan peroksida 4,18 mek/kg. Hasil analisis dengan kromatografi gas kedua sampel menunjukkan kadar asam lemak bebas berbeda.       Berdasarkan uji kualitas yang dilakukan terhadap kedua sampel yang dianalisis terdapat hasil yang diperoleh tidak memenuhi syarat yang ditentukan yakni kadar asam lemak bebas 0,08% dan bilangan peroksida 2 mek/kg. Kata kunci: Asam lemak bebas, bilangan proksida, minyak biji bunga matahari  QUALITY OF COMMERCIAL SUNFLOWER OIL AND OIL EXTRACTION SEEDS SUNFLOWER (Helianthus annuus L.) ABSTRACT Experimental study of analyzing the extract oil from sunflower seed compare with the commercial sunflower seed oil according to the company standard which includes determining of moisture content, free fatty acid content, peroxide value and the fatty acids compositions is reported in this paper. The result show that the moisture content of the extract oil is 0,43%, free fatly acid content is 0,47%, and the peroxide value is 5,22% mek/Kg. For the commercial sunflower seed oil company product that is 0,21% for the moisture, free fatty acid is 0,28% and the peroxide value is 4,89 mek/Kg. The gas chromatography analysis indicated that the most fatty acid from both samples is linoleic acid. The quality of the extract sunflower seed oil has not been improved to conform with the commercial quality according to the company standard, that is 0,08% for the free fatty acid and 2 mek/Kg for the peroxide value. Keywords: Free fatty acid, peroxide value, sunflower seeds oil


2021 ◽  
Vol 4 (1) ◽  
pp. 059-066
Author(s):  
Azuaga TI ◽  
Azuaga IC ◽  
Okpaegbe UC ◽  
Ibrahim AI ◽  
Manasseh CK

Soxhlet extraction of oil from seeds of Vitelleria paradoxa was carried out using n-hexane as the solvent. Standards methods were adopted in the analysis of the physiochemical properties; moisture content, melting point, total ash content, pH, specific gravity, iodine value, saponification value, acid value, free fatty acid value and ester value were all evaluated. The oil recovery rate was good with 32.6% yield, moisture content of 3.1%, melting point of 52oC and pH 5.7. Total ash content was 50.3%, specific gravity of 0.9 g/cm3, iodine value 39 mg/L, saponification value 224.6 mgKOH/g, acid value 59.9 mgKOH/g free fatty acid (FFA) 29.9 mgKOH/L and ester value 164.7 mg/L. The results shows that oil from Vitelleria paradoxa seed holds the potentials for wider applications in foods, cosmetics, pharmaceuticals, lubricants and soap making.


Buletin Palma ◽  
2016 ◽  
Vol 16 (1) ◽  
pp. 1
Author(s):  
STEIVIE KAROUW ◽  
CHANDRA INDRAWANTO

<p>Abstrak</p><p>Proses penggorengan akan menyebabkan perubahan mutu minyak akibat reaksi hidrolisis, oksidasi dan proses termal. Penelitian ini bertujuan untuk mengetahui perubahan mutu  minyak kelapa dan minyak sawit selama penggorengan. Minyak kelapa dan minyak sawit masing-masing digunakan untuk menggoreng kentang pada suhu 170°C selama 15 menit. Minyak tersebut digunakan untuk 3 kali penggorengan. Pada akhir penggorengan dilakukan pengambilan sampel minyak untuk dievaluasi kadar air, kadar asam lemak bebas, bilangan peroksida dan bilangan TBA (Tiobarbituric acid). Hasil penelitian menunjukkan bahwa sebelum penggorengan minyak kelapa dan minyak sawit memiliki kadar air yang hampir sama, tetapi kadar asam lemak bebas, angka peroksida dan TBA minyak kelapa lebih rendah dibanding minyak sawit. Selama penggorengan minyak kelapa dan minyak sawit menunjukkan pola perubahan kadar air yang hampir sama. Pada 1 kali dan 2 kali penggorengan kadar asam lemak bebas, angka peroksida dan angka TBA minyak kelapa dan minyak sawit cenderung berfluktuasi. Pada 3 kali penggorengan minyak kelapa memiliki kadar asam lemak bebas,  angka  peroksida  dan  angka  TBA  yang  lebih  rendah  dibandingkan  minyak  sawit.  Hasil  yang  diperoleh menunjukkan   bahwa   minyak   kelapa  lebih   stabil   terhadap   reaksi   oksidasi   dibanding   minyak   sawit   selama penggorengan.</p><p> </p><p>Pattern of Coconut Oil and Palm Oil Quality During Frying</p><p>ABSTRACT</p><p> </p><p>Frying was a process which affected the quality of oil due to hydrolysis, oxidation and thermal reactions. The aim of the research was to study the quality pattern of coconut oil and palm oil quality during frying. The oils were utilized to fry french fries at 170°C for 15 minutes and then used in frying process for 3 times. Samples of oil were taken at the end of each frying period and analyzed for its moisture, free fatty acid, peroxide and TBA (tiobarbituric acid) values. The results showed that, coconut oil and palm oil having similary moisture content before and during frying. Otherwise free fatty acid, peroxide and TBA values at coconut oil lower then palm oil. During 1 and 2 times of frying period these two oils showed fluctuation in free fatty acid, peroxide and TBA values. During 3 times of frying, coconut oil contained free fatty acid, peroxide and TBA value lower than palm oi. Thus, we consider that coconut oil was more stable to oxidation compared to palm oil during frying</p>


Author(s):  
M. O. Sunmonu ◽  
E. O. Ajala ◽  
M. M. Odewole ◽  
S. Morrison ◽  
A. M. Alabi

This study investigates physical and chemical properties two seeds namely Ugba (Telfairia pedata) and Ugwu (Telfairia occidentalis) using soaking soxhlet methods of extraction. The physical properties examined are moisture content, ash content, crude protein, fat and oil, crude fibre and carbohydrates. The chemical properties examined are Acid value (mgKOH/g), saponification value, iodine value, free fatty acid, peroxide and refractive index. Higher mean values of moisture content, ash content, crude fibre and carbohydrates were noticed in Ugwu than in Ugba under soaking method. However, the trend was reversed for crude protein and free fatty acid, in whose case they appear to be higher in Ugba than in Ugwu. For soxhlet method, moisture content, ash content, crude fibre and carbohydrates seems to have higher mean values in Ugwu seed compared to when Ugba seed was used. However, crude protein and fat and oil content were higher using Ugba seed than Ugwu seed oil. For soaking method, Ugba seed seem to produce higher mean values of sap value, iodine value, and refractive index when compared with Ugwu seed. On the other Ugwu, seems to produce acid value, free fatty acid and peroxide value when compared with ugba for soaking method. Using soxhlet apparatus however, Ugba seed produces higher mean values for acid value, sap value, iodine value, and free fatty acid compared to Ugwu. The reverse was the case with peroxide and refractive index, still with soxhlet apparatus.Kathmandu University Journal of Science, Engineering and TechnologyVol. 13, No. 2, 2017, page: 48-60


Jurnal Airaha ◽  
2019 ◽  
Vol 8 (02) ◽  
pp. 096-104
Author(s):  
Sumartini ◽  
Supriyanto ◽  
Pudji Hastuti

PT. Aquafarm Nusantara adalah  industri pengolahan ikan modern berbasis fillet ikan Nila  yang rutin melakukan ekspor ke berbagai negara. Daging ikan Nila merupakan bagian utama yang dijadikan produk fillet ikan dan diekspor, sehingga masih banyak limbah yang dihasilkan seperti tulang, sisik, kulit, isi perut, dan kepala ikan. Penelitian ini bertujuan untuk mengetahui karakteristik dan kualitas minyak ikan dari hasil samping industri fillet ikan nila setelah mengalami pemurnian. The method used was an experimental laboratory using eight different treatments on pale dose (charcoal) 1%, 2%, 3%, bentonite 1%, 2%, 3%, active charcoal 2% : 1%, and bentonite:active charcoal 1%, 2%. Parameters used are moisture content, melting point, free fatty acid, peroxide and iodin value, brightness and clarity. The best result of parameter analysis was showed by combining betonit: actice charcoal (2%:1%), it showed the moisture content 0.05 ± 0,02%, iodin number 121,87±2,55, peroxide number 7,92±0,00%, FFA 0,23±0,05, brightness 55,67±0,09% (L*),-1,09±0,03 (a*), 23,36 ±0.03(b*), and clarity 82,79 ± 0.51%T.


2019 ◽  
Vol 56 (3) ◽  
pp. 249
Author(s):  
E. Shahanas ◽  
Seeja Thomachan Panjikkaran ◽  
C. L. Sharon ◽  
E. R. Aneena ◽  
B. Suma ◽  
...  

<p>A systematic study was conducted to standardize the fermentation periods, methods and the performance of drying methods (natural sun drying and artificial oven drying) in the development of free fatty acid content in cocoa beans. Cocoa beans were subjected to different days of fermentation, starting with one day up to seven days and various fermentation methods (basket, heap and sack method). Heap method at seventh day of fermentation attained the best results with maximum per cent of fully fermented beans and lowest free fatty acid content (&lt;1.75%). After fermentation, the cocoa beans were sun-dried and oven dried. The pH of sun dried beans ranged from 4.71 to 5.91, while that of oven dried beans was between 4.53 and 5.89. The sun dried beans contained higher moisture content than artificially oven dried beans and the bean recovery was also more in sun dried beans. The lipase activity prone to free fatty acid formation was higher in oven dried cocoa beans than sun dried beans. However the free fatty acid content was increased in both sun dried and oven dried cocoa beans (1.26 and 1.47%) compared to fermented cocoa beans, but it remains below the permissible limit of 1.75%.</p>


2019 ◽  
Vol 3 (1) ◽  
pp. 59-64
Author(s):  
Ravindra Verma ◽  
Dinesh K. Sharma ◽  
Prakash S. Bisen

Background: Jatropha curcas is one of the most suitable plants which seeds are nonedible in nature but rich in oil. Around 350 oil bearing crops are found suitable as potential alternative fuels for diesel engine. Non-edible crop Jatropha curcas has been identified by many experts for biodiesel production in many countries like India. Objective: The objective of this study is to find out the composition of Jatropha curcas oil and its relation with engine parameters. This research covers selected aspects of physical and chemical relation of fatty acid composition of Jatropha curcas oil and its fuel properties. Methods: A gas-chromatograph with high resolution mass spectrometer was used to determine the free fatty acid composition of the Jatropha curcas oil sample. The column length, diameter and thickness were 30m, 0.25mm and 0.25μm respectively. Helium gas was used as carrier gas, column flow of 1.80 mL/min for the GC. Results: The major fatty acids found in Jatropha curcas crude oil were the oleic (3.81%), linoleic (50%), palmitic fatty (35.66%) acid. Some physical and chemical characteristics have been evaluated and found suitable for the application in engine. Oxidation stability oxidizability and cetane number has been calculated as 4.949, 1.076 and found 55.856. Conclusion: The physical and chemical properties of Jatropha crude oil are similar to the biodiesel except the viscosity; therefore, further processing is required. The fuel properties of Jatropha Curcas oil based biodiesel were found to be within the limits of American Society for Testing and Materials (ASTM) specifications for biodiesel and diesel fuel.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Joshua Folaranmi

This research work is about the production of biodiesel from jatropha oil. Other oils can also be used for the production, but jatropha was chosen because it is not edible therefore, it will not pose a problem to humans in terms of food competition. Before the transesterification process was carried out, some basic tests such as free fatty acid content, iodine value, and moisture content were carried out. This was done so as to ascertain quality yield of the biodiesel after the reaction. The production of the biodiesel was done with standard materials and under standard conditions which made the production a hitch-free one. The jatropha oil was heated to 60°C, and a solution of sodium methoxide (at 60°C) was added to the oil and stirred for 45 minutes using a magnetic stirrer. The mixture was then left to settle for 24 hours. Glycerin, which is the byproduct, was filtered off. The biodiesel was then thoroughly washed to ensure that it was free from excess methanol and soap. The characterization was done at NNPC Kaduna refinery and petrochemicals. The result shows that the product meets the set standard for biodiesel.


Sign in / Sign up

Export Citation Format

Share Document