Selection and establishment of Alberta agricultural soil quality benchmark sites

2008 ◽  
Vol 88 (3) ◽  
pp. 399-408 ◽  
Author(s):  
Jason Cathcart ◽  
Karen Cannon ◽  
Jody Heinz

Forty-three benchmark sites were established to monitor soils across the agricultural regions of Alberta. Soil chemical and physical properties were examined in an initial pedological investigation in 1997. This paper describes site selection and presents results from the initial pedological investigation. Ninety-five percent of the chosen sites were representative of their provincial ecodistrict, with only two profiles being darker and higher in organic carbon than expected. The majority of selected sites were gently undulating loam soils on morainal parent materials in the dryland regions of Alberta. Soil texture, cation exchange capacity, calcium carbonate content, and soil pH reflected regional differences in quaternary geology and agricultural practices across Alberta. Southern Alberta was characterized by high pH, sandier-textured soil profiles, whereas the Peace Lowlands, being derived from marine shale deposits, exhibited finer soil textures and higher cation exchanges capacities. Owing to climatic and vegetative differences, organic carbon levels were significantly greater in northern Alberta compared with the south, but were found to differ based on soil horizon and slope position. Upper slopes typically had lower organic carbon levels, particularly in the A horizon. Similar results were observed for total soil N, although other soil nutrients differed in relation to soil properties, slope and ecoregion. Data collected will provide: (a) the basis for a detailed Alberta soil quality assessment, (b) data for future modeling efforts, and (c) data necessary to identify temporal changes in soil properties, yield and management relationships. Key words: Agronomic practices, catena, ecodistrict, pedological investigation, soil landscape, soil quality

2020 ◽  
Author(s):  
Tobias Rentschler ◽  
Martin Bartelheim ◽  
Marta Díaz-Zorita Bonilla ◽  
Philipp Gries ◽  
Thomas Scholten ◽  
...  

<p>Soils and soil functions are recognized as a key resource for human well-being throughout time. In an agricultural and forestry perspective, soil functions contribute to food and timber production. Other soil functions are related to freshwater security and energy provisioning. In general, the capacity of a soil to function within specific boundaries is summarised as soil quality. Knowledge about the spatial distribution of soil quality is crucial for sustainable land use and the protection of soils and their functions. This spatial knowledge can be obtained with accurate and efficient machine-learning-based soil mapping approaches, which allow the estimation of the soil quality at distinct locations. However, the vertical distribution of soil properties is usually neglected when assessing soil quality at distinct locations. To overcome such limitations, the depth function of soil properties needs to be incorporated in the modelling. This is not only important to get a better estimation of the overall soil quality throughout the rooting zone, but also to identify factors that limit plant growth, such as strong acidity or alkalinity, and the water holding capacity. Thus, the objective of this study was to model and map the soil quality indicators pH, soil organic carbon, sand, silt and clay content as a volumetric entity. The study area is located in southern Spain in the Province of Seville at the Guadalquivir river. It covers 1,000 km<sup>2</sup> of farmland, citrus and olive plantations, pastures and wood pasture (Dehesa) in the Sierra Morena mountain range, at the Guadalquivir flood plain and tertiary terraces. Soil samples were taken at 130 soil profiles in five depths (or less at shallow soils). The profiles were randomly stratified depending on slope position and land cover. We used a subset of 99 samples from representative soil profiles to assess the overall 513 samples with FT-IR spectroscopy and machine learning methods to model equal-area spline, polynomial and exponential depth functions for each soil quality indicator at each of the 130 profiles. These depth functions were modelled and predicted spatially with a comprehensive set of environmental covariates from remote sensing data, multi-scale terrain analysis and geological maps. By solving the spatially predicted depth functions with a vertical resolution of 5 cm, we obtained a volumetric, i.e. three-dimensional, map of pH, soil organic carbon content and soil texture. Preliminary results are promising for volumetric soil mapping and the estimation of soil quality and limiting factors in three-dimensional space.</p>


SOIL ◽  
2020 ◽  
Vol 6 (1) ◽  
pp. 179-194
Author(s):  
José A. Gómez ◽  
Gema Guzmán ◽  
Arsenio Toloza ◽  
Christian Resch ◽  
Roberto García-Ruíz ◽  
...  

Abstract. This study compares the distribution of bulk soil organic carbon (SOC), its fractions (unprotected and physically, chemically, and biochemically protected), available phosphorus (Pavail), organic nitrogen (Norg), and stable isotope (δ15N and δ13C) signatures at four soil depths (0–10, 10–20, 20–30, and 30–40 cm) between a nearby open forest reference area and a historical olive orchard (established in 1856) located in southern Spain. In addition, these soil properties, as well as water stable aggregates (Wsagg), were contrasted at eroding and deposition areas within the olive orchard, previously determined using 137Cs. SOC stock in the olive orchard (about 40 t C ha−1) was only 25 % of that in the forested area (about 160 t C ha−1) in the upper 40 cm of soil, and the reduction was especially severe in the unprotected organic carbon. The reference and the orchard soils also showed significant differences in the δ13C and δ15N signals, likely due to the different vegetation composition and N dynamics in both areas. Soil properties along a catena, from erosion to deposition areas within the old olive orchard, showed large differences. Soil Corg, Pavail and Norg content, and δ15N at the deposition were significantly higher than those of the erosion area, defining two distinct areas with a different soil quality status. These overall results indicate that the proper understanding of Corg content and soil quality in olive orchards requires the consideration of the spatial variability induced by erosion–deposition processes for a convenient appraisal at the farm scale.


Author(s):  
Utin U. E ◽  
Essien G. E

A study was conducted to determine the effects of slope position and fertilizer type on soil properties and growth of maize (Zea mays) on Coastal Plain Sands of Akwa Ibom State, Nigeria. Results obtained showed that soils of lower slope (LS) had the highest contents of clay and silt compared with those of upper slope (US) position. Bulk density of the upper slope soil and that of the middle slope (MS) soils were significantly higher (P≤0.05) than that of LS soil and subsequently, total porosity and saturated hydraulic conductivity (Ksat) increased downslope. Bulk density of soils that received poultry manure (PM) and NPK+PM were significantly reduced compared to those of NPK and control while total porosity and Ksat of soils that received PM and NPK+PM were significantly higher (P≤0.05) than those of NPK and control. Soils of LS had highest pH, organic carbon, total nitrogen, available phosphorus, ECEC compared to those of MS and US. The application of poultry manure yielded increase in soil pH, soil organic carbon, total nitrogen, available phosphorus and ECEC when compared to soils of NPK and control. Growth of maize obtained with LS were consistently higher than those of the MS and US soils. Soils of LS that received NPK and NPK+PM had consistently similar maize growth, higher than other combinations of slope position and fertilizer type. The complementary application of poultry manure and NPK 15:15:15 can be the best option for increasing the fertility of soils with varying slope positions on Coastal Plain Sands.


2019 ◽  
Author(s):  
José A. Gómez ◽  
Gema Guzmán ◽  
Arsenio Toloza ◽  
Christian Resch ◽  
Roberto García-Ruíz ◽  
...  

Abstract. This study compares the distribution of bulk soil organic carbon (SOC also reported as Corg), its fractions (unprotected, physical, chemical and biochemically protected), available P (Pavail), organic nitrogen (Norg) and stable isotopes (δ15N and δ13C) signatures at four soil depths (0–10, 10–20, 20–30, 30–40 cm) between a nearby forested reference area and an historical olive orchard (established in 1856) located in Southern Spain. In addition, these soil properties, as well as water stable aggregates (Wsagg) were contrasted at eroding and deposition areas within the olive orchard, previously determined using 137Cs. Results highlight a significant depletion of SOC stock in the olive orchard as compared to the forested area, approximately 120 vs. 55 t C ha−1 at the top 40 cm of soil respectively, being severe in the case of unprotected carbon fraction. Erosion and deposition within the old olive orchard created large differences in soil properties along a catena, resulting in higher Corg, Pavail and Norg contents and δ15N at the deposition area and therefore defining two areas with a different soil quality status (degraded vs. non-degraded). Differences in δ15N at such different catena locations suggest that this isotopic signature has the potential for being used as an indicator of soil degradation magnitude, although additional studies would be required to confirm this finding. These overall results indicate that proper understanding of Corg content and soil quality in olive orchards require the consideration of the spatial variability induced by erosion/deposition processes for a convenient appraisal at farm scale.


2021 ◽  
Author(s):  
Mauro De Feudis ◽  
Gloria Falsone ◽  
Gian Marco Salani ◽  
Enrico Mistri ◽  
Valentina Brombin ◽  
...  

<p>Soil organic carbon (SOC) content is the major indicator used for soil quality evaluation because provides several ecosystem functions. However, SOC content does not allow to understand the soil potential to deliver the key ecosystem functions because most of soil processes are linked to soil biota. This research aimed to demonstrate the importance of soil indicators related to the SOC cycle rather than SOC content for soil quality evaluation. To reach this goal, three farms characterized by diverse soil types (Fluvisol and Cambisol) were selected in the Po plain of Emilia-Romagna Region, Italy. Moreover, different agricultural practices were performed: three-year-old pear trees using conventional management for Maccanti farm (MAC), 10-year pear orchard with integrated management for Zani (ZAN) and 10-year peach orchard with organic management for Biondi (BIO). MAC is located in ancient reclamation area, where Fluvisols are enriched of peat and organic matter. In each farm, soil samples from 0–15 (hereafter called topsoil) and 15–30 cm (hereafter called subsoil) depth were collected and analysed for the contents of SOC, labile organic carbon (Clab), fulvic acids, humic acids, humin and microbial biomass–C (Cmic), and for microbial respiration (Resp). In order to evaluate the soil processes related to C cycle, the humification rate (HR), metabolic quotient (qMET) and microbial quotient (qMIC) were calculated. MAC soil showed the highest SOC content without differences between topsoil and subsoil, due to ancient reclamation and agricultural management. BIO and ZAN showed similar SOC contents and it was higher in the topsoil than in subsoil due to grassy turf. Compared to BIO and ZAN, MAC soil showed a higher amount of Clab, and SOC was composed by a lower percentage of stable organic carbon (humin). Despite the higher Clab concentration, which is an easily available C source for microbes, no differences of Resp were observed among the sites, and MAC showed the lowest Cmic content. These data would indicate the presence in MAC of stress conditions which do not allow the growth of microbial biomass. The occurrence of stress conditions is clearly showed by the lowest qMET indicating how the conventional agricultural practices in peaty Fluvisol negatively affect the carbon use efficiency of microbial biomass. As a consequence, these stress conditions do not allow the C stabilization as suggested by the lowest qMIC. Further, the low C stabilization processes are highlighted by the highest HR. Conversely, despite the lowest content of Clab, BIO soil showed the lowest qMET and the highest qMIC suggesting how organic managements tend to improve the soil quality. Hence, the present study highlighted the importance of indicators linked to soil microbiome for soil quality evaluation in order to preserve its ecosystem functions. Indeed, organic carbon rich soils as those of MAC would indicate high quality soils but, because of the highly impacting practices, they showed stress conditions when the indicators linked to soil microbiome are taken in account. Therefore, if these indicators are not considered for soil quality evaluation, several fields used for agricultural purposes could become degraded.</p>


1982 ◽  
Vol 62 (4) ◽  
pp. 657-662 ◽  
Author(s):  
C. WANG

The results of a study which compared some selected soil characteristics of small and large map unit delineations are presented. Color, organic carbon, pH, cation exchange capacity and clay content were measured. Properties, such as pH and CEC of surface soil and pH of subsoil, were found to be significantly different between large and small delineations. Although Brandon is selected to be a simple and relatively uniform map unit, the range of variation was wide for all of the selected soil properties. For each property measured the coefficient of variability was always larger in surface soils than in subsoils. However, variance of measured soil properties did not differ between the two groups of delineations. Consequently, the soil boundary effect is considered to be insignificant for the Brandon unit of the Dalhousie association studied.


1983 ◽  
Vol 63 (2) ◽  
pp. 161-166 ◽  
Author(s):  
H. MORITA

The relative abundances of arabinose, xylose, mannose, galactose, glucose, total pentoses, total hexoses and total sugars in 50 soil horizon samples derived from two groups of Canadian peat soil profiles have been correlated with five characteristic soil properties, namely, fiber content, pyrophosphate index, ash content, C:N ratio and cation exchange capacity. The correlation coefficients demonstrated that of the monosaccharides or sugars examined, glucose and total sugar contents correlated best with the five soil properties. The coefficients also showed that sugar analysis is as reliable as the five soil properties for assessing the degree of decomposition of peat. Sugar analysis, therefore, can be used to differentiate peats. Key words: Peat, monosaccharides, soil properties, correlation, decomposition


2014 ◽  
Vol 65 (1) ◽  
pp. 10-17 ◽  
Author(s):  
Lidia Oktaba ◽  
Kamil Paziewski ◽  
Wojciech Kwasowski ◽  
Marek Kondras

Abstract The objective of the study was to determine properties of soils located within a city, and to assess the effect of anthropopressure on the accumulation of carbon and nitrogen in soils of Pruszków . a medium sized town in central Poland. Surface soil layers (0.20 cm) were collected at 36 sites. A total of 12 samples from lawns, 11 from allotment gardens, 9 from fields and 4 from fallow lands were subject to analysis. Lawns and allotment gardens were treated as central zone I . under strong pressure of anthropogenic factors, fields and fallow lands were treated as zone II . with potentially low level of anthropogenic influence. The statistical analysis showed significantly higher (p=0.008) amount of organic carbon (Corg) in lawns (mean 20.5 g·kg-1) and allotment gardens (21.7 g·kg-1) . zone I, than on fallow lands (10.4 g·kg-1) and fields (1.27 g·kg-1) . zone II. The surface layer of soil from allotment gardens also contained significantly higher amount of total nitrogen (mean content 1.1 g·kg-1) than others. The amounts of Corg not depending on the soil texture and very high C/N ratio, suggests the anthropogenic origin of the carbon. The C/N ratio was the highest in the soils of lawns (mean value 26.2) and significantly differed (p=0.04) from C/N ratios in soils of fields and allotment gardens. This suggests low intensity of humus transformation. Other chemical characteristics as hydrolytic acidity (Ha), cation exchange capacity (CEC), exchangeable base cations (EBC) and EBC share in CEC were also higher in central part of Pruszków town (zone I), indicating the effect of urbanization on soil properties.


Author(s):  
Maximilian Meyer ◽  
Dörte Diehl ◽  
Gabriele Ellen Schaumann ◽  
Katherine Muñoz

Abstract Purpose The application of plastic mulching differs globally as well as climate, soils, crops, and agricultural practices, making it difficult to generalize the reported impacts on soil. Because literature is scarce about the influence of plastic mulching on soil under temperate, humid climate, the objective of this study was to understand how multiannual plastic mulching influences central soil parameters and processes under Central European cultivation conditions to evaluate its impact on soil quality in the long term. Materials and methods Central soil parameters and processes like leaching, aggregation, soil organic matter (SOM), and microbial biomass were investigated in a strawberry cultivation in Southwestern Germany. The field experiment compared a plastic-covered ridge–furrow system with subsurface drip irrigation (PC) to the same system with straw coverage (SC) in three soil layers (0–10, 10–30, and 30–60 cm) at seven dates within a 3-year period. Soil analyses comprised soil temperature and moisture, pH, bulk density, water-stable aggregates, soil organic carbon, dissolved organic carbon, and microbial biomass carbon and nitrogen. Results Rainfall infiltration impeded by PC reduces soil moisture but neither reduces leaching nor promotes (macro-)aggregate formation or stability; however, it maintains a loose and friable soil structure in surface soil (0–5 cm), compared to SC. PC promotes SOM accumulation and shifted SOM composition to a more hardly degradable SOM, especially below the topsoil (10–60 cm). Furthermore, PC revealed no indications of an increased microbial biomass or activity accompanied with an enhanced SOM decomposition due to the shifted microclimate. The seasonal, time- and depth-dependent effects, observed in some parameters, emphasize the importance to include them in future studies for a more holistic process understanding. Conclusion Our study showed no indications that multiannual plastic mulching influences soil quality within the 3 years of this study. Further research is advisable to support our findings on a larger scale and longer time periods and across various soil and crop types.


2002 ◽  
Vol 32 (8) ◽  
pp. 1381-1392 ◽  
Author(s):  
Michael D Bock ◽  
Ken CJ Van Rees

Greater utilization of hardwood species and societal concerns over maintenance of ecological integrity have provided impetus for forest managers to consider alternative silvicultural practices in boreal mixedwood forests. The objective of this study was to quantify the effects of five mechanical site preparation (MSP) treatments on soil properties and understory vegetation of mixedwood stands in the Northwest Territories (NWT). Soil and understory vegetation conditions in treatments (3 years post-MSP treatment) and adjacent uncut forest controls were sampled. Significant Shearblade – Grizz R-ex and Shearblade treatment soil property effects were consistently found. Increases in bulk density (307%) and decreases for total organic carbon (92%); total nitrogen (86%); cation exchange capacity (74%); and exchangeable calcium (72%), magnesium (67%), and potassium (75%) in the soil surface (0–12.8 cm) were observed. Increases in mineral soil pH (1.0 units), total organic carbon (94%), cation exchange capacity (20%), and exchangeable calcium (35%) and magnesium (56%) were also found. Dissimilarity of the understory community with that of the uncut forest increased as follows: uncut forest < harvested only < Meri–Crusher = Grizz R-ex < Shearblade – Meri-Crusher < Shearblade – Grizz R-ex < Shearblade. This research suggests that winter shearblading should be utilized only where it is necessary to achieve specific management objectives.


Sign in / Sign up

Export Citation Format

Share Document