RELATION DU POTASSIUM EXTRAIT PAR EUF ET QUELQUES MÉTHODES CHIMIQUES AVEC LES PROPRIÉTÉS DU SOL ET LE RENDEMENT DES PLANTES

1987 ◽  
Vol 67 (1) ◽  
pp. 17-31 ◽  
Author(s):  
T. SEN TRAN ◽  
M. TABI ◽  
C. R. DE KIMPE

The objectives of this study were to compare the EUF procedures (50, 200 and 400 V) and some chemical methods (1 N NH4OAc, 0.01 M CaCl2, 1 N HNO3) in order to estimate the K fertility levels of 60 Quebec soils. The EUF-50 V-K quantities corresponded to CaCl2-K while EUF-(50 + 200 + 400 V) to acetate-K. The relations between EUF-(50 V)-K, EUF-(200 V)-K to Acetate-K were improved when introducing clay contents, CEC values and K saturation levels. On the other hand, soil pH, carbonate and exchangeable (Ca+Mg) contents had significant effects on the relations between EUF-400 V-K and Acetate-K. A greenhouse experiment, using ryegrass as the test plant, was carried out on these soils with two treatments (complete fertilization with and without K). EUF-400 V-K, Acetate-K and EUF-(50 + 200 + 400 V)-K were the best criteria to estimate relative yields and K uptake by the plant. EUF-(50 + 200 V) underestimates K fertility level for soils rich in clay, having high pH (H2O) or exchangeable (Ca+Mg) contents. Higher correlation coefficients for K uptake by the plant were obtained in multiple regression where EUF-(50 + 200 V)-K and EUF-400 V-K were taken into account. The relation between plant K uptake and K values determined by all methods were improved by considering the K saturation levels on cation exchange sites. Acetate-K contents explained up to 88% of the variation in K uptake when K saturation level was introduced. Finally, this method can overestimate the K fertility levels for soils rich in clay or organic matter. Key words: Electro-ultrafiltration, available K, soil properties, exchangeable K

1992 ◽  
Vol 72 (2) ◽  
pp. 159-167 ◽  
Author(s):  
Liangxue Liu ◽  
T. E. Bates ◽  
T. S. Tran

The extractions of soil K by electroultrafiltration (EUF) and by chemical methods were compared as predictors of plant-available K for greenhouse-grown alfalfa on 38 Ontario soils. The relation of soil properties to the amount of K extracted by EUF fractions was also examined. The contents of silt and clay were negatively correlated with EUF-K at 50 V and 22 °C and positively correlated with EUF-K at 400 V and 80 °C. Soil pH and organic matter were not significantly correlated with the amounts of K extracted in the EUF-K fractions. The EUF extraction of K was influenced by the presence of carbonate or high exchangeable calcium in soils. Similar correlations were obtained between K uptake and K extracted by chemical methods and the sum of EUF-K fractions. When used along with other soil properties, EUF-K fractions and K extracted by chemical methods predicted availability of soil K with roughly equal ability. The model using the sum of K extracted by EUF at 50, 200 and 400 V is the simplest one and contains three variables, K, K2 and Ca2. The use of EUF is limited due to cost of equipment and time required for analysis, unless a number of nutrients can be accurately determined on one extract. Among the chemical methods, equations developed using three nonacidic extradants, NaCl, ABDTPA and NH4OAc explained more variation in K uptake than two acidic extractants, Mehlich 3 and 0.1 M HNO3. The NaCl model, ABDTPA model and NH4OAc model contained the same variables and had similar R2 values (0.88–0.91). Key words: Available K, chemical methods, electro-ultrafiltration, EUF-K fractions, K uptake


1962 ◽  
Vol 42 (1) ◽  
pp. 23-30 ◽  
Author(s):  
E. J. Evans ◽  
A. J. Dekker

Oats were grown in the greenhouse in six soils varying widely in pH, organic matter content, C.E.C., per cent saturation, and exchangeable calcium. Sr90 was added to all soils and its concentration in oats, as influenced by soil properties or soil treatment, was determined.The Sr90 content of oats grown in six soils, which included both saturated and unsaturated soils, was highly significantly correlated with the reciprocal of the exchangeable Ca contents of the soils with correlation coefficients of 0.99 for both the straw and the grain. The correlation coefficients between Sr90 concentration and the reciprocal of the C.E.C. for oat straw and oat grain were 0.65 and 0.55 respectively, which were not significant at the 5 per cent level.When calcium salts were added to three acid soils the larger applications of CaCl2 and CaSO4 lowered the soil pH, whereas CaCO3 raised the soil pH, but all three salts caused a decrease in Sr90 concentration in oats. A greater decrease in Sr90 content was effected by the addition of Ca salts to soil with low exchangeable Ca and low percentage Ca saturation than to soil with high percentage Ca saturation. It was concluded that the exchangeable Ca content, not C.E.C. or pH, was the dominant soil property upon which the Sr90 concentration in plants depended.


Solid Earth ◽  
2016 ◽  
Vol 7 (2) ◽  
pp. 549-556 ◽  
Author(s):  
Linyou Lü ◽  
Ruzhen Wang ◽  
Heyong Liu ◽  
Jinfei Yin ◽  
Jiangtao Xiao ◽  
...  

Abstract. Soil coarseness is the main process decreasing soil organic matter and threatening the productivity of sandy grasslands. Previous studies demonstrated negative effect of soil coarseness on soil carbon storage, but less is known about how soil base cations (exchangeable Ca, Mg, K, and Na) and available micronutrients (available Fe, Mn, Cu, and Zn) response to soil coarseness. In a semi-arid grassland of Northern China, a field experiment was initiated in 2011 to mimic the effect of soil coarseness on soil base cations and available micronutrients by mixing soil with different mass proportions of sand: 0 % coarse elements (C0), 10 % (C10), 30 % (C30), 50 % (C50), and 70 % (C70). Soil coarseness significantly increased soil pH in three soil depths of 0–10, 10–20 and 20–40 cm with the highest pH values detected in C50 and C70 treatments. Soil fine particles (smaller than 0.25 mm) significantly decreased with the degree of soil coarseness. Exchangeable Ca and Mg concentrations significantly decreased with soil coarseness degree by up to 29.8 % (in C70) and 47.5 % (in C70), respectively, across three soil depths. Soil available Fe, Mn, and Cu significantly decreased with soil coarseness degree by 62.5, 45.4, and 44.4 %, respectively. As affected by soil coarseness, the increase of soil pH, decrease of soil fine particles (including clay), and decline in soil organic matter were the main driving factors for the decrease of exchangeable base cations (except K) and available micronutrients (except Zn) through soil profile. Developed under soil coarseness, the loss and redistribution of base cations and available micronutrients along soil depths might pose a threat to ecosystem productivity of this sandy grassland.


1998 ◽  
Vol 131 (4) ◽  
pp. 455-464 ◽  
Author(s):  
B. J. CHAMBERS ◽  
T. W. D. GARWOOD

Lime loss rates were determined for 11 agricultural soils across England (1987–92) under arable cropping (six sites) and grassland management (five sites), receiving commercial rates of fertilizer inputs. Lime additions in the range 0–1500 kg ha−1 CaCO3 (250 kg ha−1 CaCO3 increments) were made annually to the sites. Soil pH (water and 0·01 m CaCl2) and exchangeable calcium concentrations were measured annually. The annual lime loss rates were calculated as the amount of lime needed to maintain the initial site pH or exchangeable Ca concentrations.Lime loss rates based on soil water pH varied between 40 and 1270 kg ha−1 CaCO3, on the basis of CaCl2 pH between 0 and 1370 kg ha−1 CaCO3, and exchangeable Ca between 0 and 1540 kg ha−1 CaCO3. There was a positive relationship between the lime loss rate (based on water pH) and initial soil pH value (r=0·75; P<0·01), and a negative relationship with soil organic matter content (r=0·63; P<0·05) was based on soil pH, organic matter content and nitrogen (N) fertilizer input. Lime loss rates were approximately double those predicted by previous models developed in the 1970s, reflecting the greater quantities of inorganic N fertilizer now being applied to agricultural land.


1966 ◽  
Vol 46 (2) ◽  
pp. 155-160 ◽  
Author(s):  
G. R. Saini ◽  
A. A. MacLean ◽  
J. J. Doyle

The relationship of the mean weight diameter of water-stable aggregates to certain soil properties (clay, organic matter, free iron, free aluminum, and polysaccharide contents) and the relationship of the increase in aggregation caused by VAMA to the same properties of 24 New Brunswick soils were evaluated by correlation and regression analyses.Simple correlation coefficients relating aggregation to soil properties indicated that organic matter (r = 0.627), polysaccharides (r = 0.602), and aluminum (r = 0.679) were the most important factors. However, when the influence of each factor was separated by partial correlation, the coefficients were not significant. On the other hand, the combined effects of all factors as indicated by the multiple correlation coefficient (r = 0.743) was significant at the 1% level. The effect of the same soil properties on response to VAMA, as shown by increase in mean weight diameter, indicated that clay exerted the greatest influence. The relationship with other factors was nonsignificant.


2020 ◽  
Vol 5 (2) ◽  
pp. 65-71
Author(s):  
Israt Jahan ◽  
AKM Abul Ahsan ◽  
MMR Jahangir ◽  
Mahmud Hossain ◽  
Md Anwarul Abedin

Soil physico-chemical properties are an important phenomenon for sustainable crop production and maintenance of optimum soil health. Hence, a laboratory measurement was conducted with soil samples of three years long experimental field of the Department of Soil Science, Bangladesh Agricultural University, Mymensingh to assess the changes in five selected soil physico-chemical properties viz. soil texture, bulk density, soil pH, total nitrogen and organic matter. The experiment was laid out in a split plot design with two water regimes (continuous flooding and alternate wetting & drying) in the main plots and five fertilizer treatments (N0 - control, N1- 140 kg N/ha as PU, N2- 104 kg N/ha as USG (2× 1.8 g/ 4 hills), N3 - 5 t CD + PU @ 140 kg N /ha on IPNS basis and N4- 5 t CD + USG (2× 1.8 g/ 4 hills @ 104 kg N/ha)) in the subplots under rice-rice cropping pattern with three replications. After three years, soil samples were collected at 0-5 and 5-10 cm soil depths for measuring bulk density and at 0-10 cm depth for other soil properties and analyzed. Results found that % sand, % silt, % clay, bulk density and soil pH was not changed significantly compared to initial status. Percentage of total nitrogen and organic matter was significantly affected by irrigation and fertilization. Total nitrogen (%) was higher in AWD whereas organic matter (%) was higher in CF practice. The highest total nitrogen (%) and organic matter (%) was found in N4 treatment in which USG was applied in combination with cowdung as organic manure. It can be suggested that N4 treatment was formed good combination for sustaining chemical properties of soil. Further long- term experimentation will be needed to know the changes in soil properties for sustainable crop production and improving soil health. Asian Australas. J. Biosci. Biotechnol. 2020, 5 (2), 65-71


2021 ◽  
pp. 102-108
Author(s):  
Nkwopara U. N ◽  
Onwudike S.U ◽  
Ihem E.E ◽  
Osisi A.F ◽  
Egboka N.T

Lead adsorption and desorption at different pH levels in acid soils of diverse parent materials were evaluated. The soil samples were collected from soils underlain by olivine basalt (Ikom), coastal plain sands (Ihiagwa) and false bedded sandstone (Ishiagu). The collected samples were air -dried, crushed, sieved with a 2 mm sieve and analyzed in the laboratory. The adsorption of lead (Pb) increased with increasing solution pH. At pH 3, 4 and 6, the adsorption of Pb was higher in false bedded sandstone than the other soils. At pH 5, adsorption of Pb was higher in olivine basalt than the other soils. Except at pH 3, desorption of Pb was higher in coastal plain sands than the other soils. At the same time it was lower in false bedded sand stone than the other soils at all pH. At pH 5, adsorption of Pb had a significant positive correlation with organic matter (r =0.774481, p≤ 0.05), while at pH 6, it had a significant positive correlation with soil pH (r =0.738401, p ≤ 0.05). Organic matter and soil pH are the most critical soil properties affecting adsorption-desorption of Pb on these soils.


2013 ◽  
Vol 27 (1) ◽  
pp. 57-67 ◽  
Author(s):  
S.E. Obalum ◽  
J. Oppong ◽  
C.A. Igwe ◽  
Y. Watanabe ◽  
M.E. Obi

Abstract The spatial variability of some physicochemical properties of topsoils/subsoils under secondary forest, grassland fallow, and bare-soil fallow of three locations was evaluated. The data were analyzed and described using classical statistical parameters. Based on the coefficient of variation, bulk density, total porosity, 60-cm-tension moisture content, and soil pH were of low variability. Coarse and fine sand were of moderate variability. Highly variable soil properties included silt, clay, macroporosity, saturated hydraulic conductivity, organic matter concentration, and cation exchange capacity. Overall, soil pH and silt varied the least and the most, respectively. Relative weighting showed that location dominantly influenced the soil variability, except for soil porosity and organic matter concentration influenced mostly by land use. Most of the soil data were normally distributed; others were positively skewed and/or kurtotic. The minimum number of samples (at 25 samples ha-1) required to estimate mean values of soil properties was highly soil property-specific, ranging from 1 (topsoil pH-H2O) to 246 (topsoil silt). Cation exchange capacity of subsoils related fairly strongly with cation exchange capacity of topsoils (R2 = 0.63). Spatial variability data can be used to extrapolate dynamic soil properties across a derived-savanna landscape.


2020 ◽  
Vol 30 (3) ◽  
pp. 282-287
Author(s):  
U Kumar ◽  
H Rashid ◽  
NH Tithi ◽  
MY Mia

The study was intended to investigate the status of soil properties and its relation to soil pH in Madhupur tract soil of Tangail district, Bangladesh. Thirty soil samples were collected during the period from June-July, 2016 covering four types of land as high land, medium high land, medium low land and low land. The interpretative data showed that the range of pH was strongly acidic to slightly acidic (5.27- 5.90), mean pH was slightly acidic (5.61). The organic matter (OM) status was medium (2.11 to 2.33 %) and mean OM was medium (2.24 %). The Nitrogen (N) status was low (0.11 to 0.13 %) and mean N status was medium (0.12 %). The range of the Phosphorus (P) status was found very low to medium (1.63 to 11.06 µg g-1 soil) and mean P status was medium (7.37 µg g-1 soil). The Potassium (K) status was low to very high (0.15 to 0.75meq/100 g soil) and mean K status was low (0.18 meq/100 g soil). The range of the Sulfur (S) status was found from low to medium (11.73 to 16.31 µg g-1 soil), mean S status was low (13.26 µg g-1 soil). The range of the Zinc (Zn) status was found from medium to high (0.96 to 2.23 µg g-1 soil), mean Zn status was optimum (1.55 µg g-1 soil). The range of the Boron (B) status was found from medium to very high (0.39 to 0.86 µg g-1 soil), mean B status was high (0.73 µg g-1 soil). The Calcium (Ca) status was medium to optimum (4.42 to 5.23meq/100 g soil), mean Ca status was optimum (4.83 meq/100 g soil). The Magnesium (Mg) status was optimum to high (1.21 to 1.75meq/100 g soil), mean Mg status was optimum (1.37 meq/100 g soil). No significant correlation of OM and other nutrients with pH. Progressive Agriculture 30 (3): 282-287, 2019


2017 ◽  
Author(s):  
Zainal Muktamar ◽  
Bajora Justisia ◽  
Nanik Setyowati

Compost application to soil leads to the improvement of its properties. However, nutrient content and enhancing capacity of compost are highly dependent on the original source and additive. The purpose of the experiment was to investigate selected soil quality indicators’ improvement and sweet corn growth following application of water hyacinth compost. Greenhouse experiment was carried out using Completely Randomized Design with 2 factors. First factor consisted of soils from humid tropics, i.e. Andepts, Udepts, and Udults and second factor comprised of water hyacinth compost rates, i.e. 0, 5, 10, 15, 20, and 25 Mg ha-1. Treatment combinations were replicated 3 times. Compost was incorporated in soil a week before planting of sweet corn. After reaching maximum sweet corn growth, soil sample was collected, air-dried, grinded and passed through 0.5 mm screen, and analyzed for selected soil properties, except microbial biomass carbon (MBC) and particulate organic matter carbon (POMC) which were analyzed using fresh soil samples. The experiment pointed out that application of water hyacinth compost on Udepts exhibited the highest total soil organic carbon (TSOC), MBC, soil pH and available P (Bray I), followed by those in Andeps and Udults. Particulate organic matter carbon (PMOC), however, was highest in Andepts as compared to other soils. Higher rates of compost application contributed higher increase in TSOC, MBC, soil pH, available P, and exchangeable K. Udults had more pronounced increase in soil pH and decline of exchangeable Al than other soils. Pearson correlation analysis showed that the most distinct correlation among soil properties was observed between exchangeable Al and soil pH, followed by TSOC and MBC with coefficient correlation of -0.91 and 0.85, respectively. Correlation between soil properties and sweet corn growth exhibited that the most prominent correlation was shown between available P and shoot dry weigh of sweet corn with coefficient correlation of 0.92. This indicates that soil available P has significant contribution on sweet corn growth.


Sign in / Sign up

Export Citation Format

Share Document