Small-molecule degraders of cyclin-dependent kinase protein: a review

Author(s):  
Bin Yu ◽  
Zekun Du ◽  
Yuming Zhang ◽  
Zhiyu Li ◽  
Jinlei Bian

Proteolysis-targeting chimeras are a new modality of chemical tools and potential therapeutics involving the induction of protein degradation. Cyclin-dependent kinase (CDK) protein, which is involved in cycles and transcription cycles, participates in regulation of the cell cycle, transcription and splicing. Proteolysis-targeting chimeras targeting CDKs show several advantages over traditional CDK small-molecule inhibitors in potency, selectivity and drug resistance. In addition, the discovery of molecule glues promotes the development of CDK degraders. Herein, the authors describe the existing CDK degraders and focus on the discussion of the structural characteristics and design of these degraders.

2012 ◽  
Vol 102 (3) ◽  
pp. 635a
Author(s):  
Luigi I. Iconaru ◽  
Anang Shelat ◽  
Jian Zuo ◽  
Richard W. Kriwacki

2012 ◽  
Vol 83 (7) ◽  
pp. 866-873 ◽  
Author(s):  
Sougata Saha ◽  
Junling Wang ◽  
Brian Buckley ◽  
Qingqing Wang ◽  
Brenda Lilly ◽  
...  

Author(s):  
Ming He ◽  
Wenxing Lv ◽  
Yu Rao

Proteolysis targeting chimeras (PROTAC) represents a new type of small molecule induced protein degradation technology that has emerged in recent years. PROTAC uses bifunctional small molecules to induce ubiquitination of target proteins and utilizes intracellular proteasomes for chemical knockdown. It complements the gene editing and RNA interference for protein knockdown. Compared with small molecule inhibitors, PROTAC has shown great advantages in overcoming tumor resistance, affecting the non-enzymatic function of target proteins, degrading undruggable targets, and providing new rapid and reversible chemical knockout tools. At the same time, its challenges and problems also need to be resolved as a fast-developing newchemical biology technology.


2020 ◽  
Author(s):  
Hend Mohamed Abdel Hamid ◽  
Zeinab El Sayed Darwish ◽  
Sahar Mohamed Elsheikh ◽  
Ghada Mourad ◽  
Hanaa Donia ◽  
...  

Abstract Background: The concept of personalized therapy has been proven to be a promising approach. A popular approach is to utilize gold nanoparticles (AuNPs) as drug delivery vectors for cytotoxic drugs and small molecule inhibitors to target and eradicate oral cancer cells in vitro and in vivo. While it is currently accepted that the cytotoxic drug’s mode of action remains the key regulator of the therapeutic outcome and toxicity beside nanocarrier design. None of the leading studies have compared multiple chemotherapeutics to their baseline free drugs nor used multiple nanocarriers to calculate drugs impact versus nanocarriers effect. We hypothesized that similarly constructed nanocarriers play a greater role than only acting as cargo-carriers. If proven, AuNPs may have a therapeutic role beyond bypassing cancer cell membrane and delivering their loaded drugs. We propose that similarly constructed AuNPs can flexibly leverage different conjugated drugs irrelevant to their mode of action enhancing the therapeutic outcome.Methods: We conjugated 5- fluorouracil (5Fu), camptothecin (CPT), and a fibroblast growth factor receptor1-inhibitor (FGFR1i) to gold nanospheres (AuNSs). We followed their trajectories in Syrian hamsters with chemically induced buccal carcinomas.Results: Flow cytometry and cell cycle data shows that 5Fu- and CPT- induced a similar ratio of S-phase cell cycle arrest as nanoconjugates and in their free forms. On the other hand, FGFR1i-AuNSs induced significant sub-G1 cell population compared with its free form. Despite cell cycle dynamics variability, there was no significant difference in tumor cells’ proliferation rate between CPT-, 5Fu- and FGFR1i- AuNSs treated groups. Clinically, FGFR1i-AuNSs induced the highest tumor reduction rates followed by 5Fu- AuNSs. CPT-AuNSs induced significantly lower tumor reduction rates compared with the 5Fu- and FGFR1i- AuNSs despite showing similar proliferative rates in tumor cells.Conclusions: Our data indicates that the cellular biological events do not predict the clinical outcome. Furthermore, our results suggest that AuNSs selectively enhances the therapeutic effect of small molecule inhibitors such as FGFR1i than potent anticancer drugs. Future studies are required to better understand the underlying mechanism.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 763-763
Author(s):  
James Bradner ◽  
Yong-Son Kim ◽  
Angela Koehler ◽  
Masaoki Kawasumi ◽  
Xiaodong Li ◽  
...  

Abstract Background The replication (G2/M) checkpoint is principally mediated by the serine/threonine protein kinase ATR (ataxia telangiectasia mutated and Rad3-related). ATR is a large (350 kD) member of the phosphatidylinositol kinase related kinase family. After exposure to genotoxic or replication stress, ATR halts cell cycle progression, allowing DNA repair complexes time enough to restore the fidelity of the genome prior to cell division. Previous experiments have demonstrated that cancer cells with p53 mutation are critically dependent on ATR-mediated arrest of the cell cycle. Industrial approaches to identify ATR inhibitors have failed likely as a result of protein insolubility. Methods We have undertaken a novel chemical genetic approach employing small molecule microarrays (SMMs) to identify molecules with high binding specificity for ATR. Three diversity-oriented combinatorial chemical libraries of more than 15,000 entities were generated by split-pool synthesis in solid phase on polystyrene macrobead supports. Compounds were robotically printed in microarray format on glass slides. Four analogs of FK506 were printed as positive controls. Extracts were prepared from mammalian cells transfected with over-expression constructs of FLAG-tagged ATR, FKBP12 and GFP. A protocol was developed and optimized for screening employing a primary anti-FLAG mouse monoclonal antibody and Cy5-fluorophore labeled anti-mouse antibody. Data analysis for small molecule binders was performed with GenePix software on an Axon Scanner. Biological activity of these molecules was analyzed in the context of mitotic spread and chromosomal fragility assays. Results Protein expression and antibody fidelity was verified by Western blot. The lysate-based SMM screening approach was optimized and validated by recognition of an interaction between over-expressed, epitope-tagged FKBP12 and analogs of FK506. Six small molecule hits suggesting ATR binding were identified and verified by triplicate microarray assays. Positive compounds were structurally similar members of a dihydropyrancarboxamide library suggesting recognition of a common target. Mitotic spread analysis of cells treated with two of these molecules and hydroxyurea demonstrated the premature chromatin condensation phenotype characteristic of replication checkpoint inhibition. Chromosomal fragility was notably augmented by these molecules as well. Chemosensitivity following replication stress was witnessed in p53-negative cells relative to an otherwise identical wild-type cell line. Conclusions Classical approaches to drug discovery are often limited by challenges in protein biochemistry such as protein size, solubility, activity and yield. We present compelling data that the small molecule microarray format can effectively be tailored for use with cellular lysates over-expressing a protein target of biological interest. Furthermore, we have used an optimized protocol to identify two novel, active small molecule inhibitors of the replication checkpoint (SMIRC-1 and SMIRC-2). The enhanced chemosensitivity in p53-negative cell lines supports a plausible role for ATR inhibitors as potentially useful chemotherapeutic agents.


Sign in / Sign up

Export Citation Format

Share Document