scholarly journals New Vitamin E Analogues

2016 ◽  
Vol 23 (4) ◽  
pp. 25-42
Author(s):  
Asma A. Nashawi ◽  
Richard Hartley

Lipid peroxidation is the mediator of several pathophysiological events such atherosclerosis, neurodegenerative disease and others. It is induced by reactive oxygen species that react with biological substrates, leading to cell damage. It is thought that Nicotinamide Adenine Dinucleotide Phosphate Hydrogen oxidases, as well as mitochondria dysfunction and other sources, are at the centre of these events, so it becomes an important therapeutic target. In order to retard this damage and the progression of the disease, the natural and synthetic antioxidant vitamin E (Tocopherol) has been studied extensively. In this study, we briefly address current knowledge on the function of vitamin E and try to emphasize its antioxidant properties versus its other properties. The purpose of this study is to design and synthesize a new vitamin E analogue that is placed outside cells. The precursor to a new vitamin E analogue bearing two charges is prepared from the reaction of the corresponding (6acetoxy-2,5,7,8- tetramethylchroman-2-yl) acyl chloride compound that was directly treated with an aniline-2,5-disulfonic acid tetrabutylammonium salt. The latter, a newly prepared compound, is considered a target. The new tocopherol analogue of the product was expected to exhibit protection of lipid membrane from the oxidative damage behavior of reactive oxygen species.

1995 ◽  
Vol 64 (4) ◽  
pp. 825-831 ◽  
Author(s):  
Efrossini Kessopoulou ◽  
Hillary J. Powers ◽  
Khawam K. Sharma ◽  
Michael J. Pearson ◽  
Jean M. Russell ◽  
...  

2020 ◽  
Author(s):  
Liang Sun ◽  
Anuj K. Sharma ◽  
Byung-Hee Han ◽  
Liviu M. Mirica

<p>Alzheimer's disease (AD) is the most common neurodegenerative disorder, yet the cause and progression of this disorder are not completely understood. While the main hallmark of AD is the deposition of amyloid plaques consisting of the β-amyloid (Aβ) peptide, transition metal ions are also known to play a significant role in disease pathology by expediting the formation of neurotoxic soluble β-amyloid (Aβ) oligomers, reactive oxygen species (ROS), and oxidative stress. Thus, bifunctional metal chelators that can control these deleterious properties are highly desirable. Herein, we show that amentoflavone (AMF) – a natural biflavonoid compound, exhibits good metal-chelating properties, especially for chelating Cu<sup>2+</sup> with very high affinity (pCu<sub>7.4</sub> = 10.44). In addition, AMF binds to Aβ fibrils with a high affinity (<i>K<sub>i</sub></i> = 287 ± 20 nM) – as revealed by a competition thioflavin T (ThT) assay, and specifically labels the amyloid plaques <i>ex vivo</i> in the brain sections of transgenic AD mice – as confirmed via immunostaining with an Ab antibody. The effect of AMF on Aβ<sub>42</sub> aggregation and disaggregation of Aβ<sub>42</sub> fibrils was also investigated, to reveal that AMF can control the formation of neurotoxic soluble Aβ<sub>42</sub> oligomers, both in absence and presence of metal ions, and as confirmed via cell toxicity studies. Furthermore, an ascorbate consumption assay shows that AMF exhibits potent antioxidant properties and can chelate Cu<sup>2+</sup> and significantly diminish the Cu<sup>2+</sup>-ascorbate redox cycling and reactive oxygen species (ROS) formation. Overall, these studies strongly suggest that AMF acts as a bifunctional chelator that can interact with various Aβ aggregates and reduce their neurotoxicity, can also bind Cu<sup>2+</sup> and mediate its deleterious redox properties, and thus AMF has the potential to be a lead compound for further therapeutic agent development for AD. </p>


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii17-ii17
Author(s):  
Shashank Hambarde ◽  
Martyn Sharpe ◽  
David Baskin ◽  
Santosh Helekar

Abstract Noninvasive cancer therapy with minimal side effects would be ideal for improving patient outcome in the clinic. We have developed a novel therapy using strong rotating magnets mounted on a helmet. They generate oscillating magnetic fields (OMF) that penetrate through the skull and cover the entire brain. We have demonstrated that OMF can effectively kill patient derived glioblastoma (GBM) cells in cell culture without having cytotoxic effects on cortical neurons and normal human astrocytes (NHA). Exposure of GBM cells to OMF reduced the cell viability by 33% in comparison to sham-treated cells (p&lt; 0.001), while not affecting NHA cell viability. Time lapse video-microscopy for 16 h after OMF exposure showed a marked elevation of mitochondrial reactive oxygen species (ROS), and rapid apoptosis of GBM cells due to activation of caspase 3. Addition of a potent antioxidant vitamin E analog Trolox effectively blocked OMF-induced GBM cell death. Furthermore, OMF significantly potentiated the cytotoxic effect of the pro-oxidant Benzylamine. The results of our studies demonstrate that OMF-induced cell death is mediated by ROS generation. These results demonstrate a potent oncolytic effect on GBM cells that is novel and unrelated to any previously described therapy, including a very different mechanism of action and different technology compared to Optune therapy. The effect is very powerful, and unlike Optune, can be seen within hours after initiation of treatment. We believe that this technology holds great promise for new, effective and nontoxic treatment of glioblastoma.


2021 ◽  
Author(s):  
Małgorzata Olszowy-Tomczyk

AbstractOxidative stress, associated with an imbalance between the oxidants (reactive oxygen species) and the antioxidants in the body, contributes to the development of many diseases. The body’s fight against reactive oxygen species is supported by antioxidants. Nowadays, there are too many analytical methods, but there is no one universal technique for assessing antioxidant properties. Moreover, the applied different ways of expressing the results lead to their incompatibility and unreasonable interpretation. The paper is a literature review concerning the most frequent ways of antioxidant activities expression and for an easy and universal method of the obtained results discussion. This paper is an attempt to point out their disadvantages and advantages. The manuscript can support the searching interpretation of the obtained results which will be a good tool for the development of a number of fields, especially medicine what can help in the future detection and treatment of many serious diseases. Graphic abstract


2021 ◽  
Vol 22 (3) ◽  
pp. 1106
Author(s):  
Rayan Bou-Fakhredin ◽  
Batoul Dia ◽  
Hilda E. Ghadieh ◽  
Stefano Rivella ◽  
Maria Domenica Cappellini ◽  
...  

Oxidative damage by reactive oxygen species (ROS) is one of the main contributors to cell injury and tissue damage in thalassemia patients. Recent studies suggest that ROS generation in non-transfusion-dependent (NTDT) patients occurs as a result of iron overload. Among the different sources of ROS, the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase family of enzymes and cytochrome P450 (CYP450) have been proposed to be major contributors for oxidative stress in several diseases. However, the sources of ROS in patients with NTDT remain poorly understood. In this study, Hbbth3/+ mice, a mouse model for β-thalassemia, were used. These mice exhibit an unchanged or decreased expression of the major NOX isoforms, NOX1, NOX2 and NOX4, when compared to their C57BL/6 control littermates. However, a significant increase in the protein synthesis of CYP4A and CYP4F was observed in the Hbbth3/+ mice when compared to the C57BL/6 control mice. These changes were paralleled by an increased production of 20-hydroxyeicosatetraenoic acid (20-HETE), a CYP4A and CYP4F metabolite. Furthermore, these changes corroborate with onset of ROS production concomitant with liver injury. To our knowledge, this is the first report indicating that CYP450 4A and 4F-induced 20-HETE production mediates reactive oxygen species overgeneration in Hbbth3/+ mice through an NADPH-dependent pathway.


2018 ◽  
Vol 19 (12) ◽  
pp. 4078 ◽  
Author(s):  
Dahn Clemens ◽  
Michael Duryee ◽  
Cleofes Sarmiento ◽  
Andrew Chiou ◽  
Jacob McGowan ◽  
...  

Doxycycline (DOX), a derivative of tetracycline, is a broad-spectrum antibiotic that exhibits a number of therapeutic activities in addition to its antibacterial properties. For example, DOX has been used in the management of a number of diseases characterized by chronic inflammation. One potential mechanism by which DOX inhibits the progression of these diseases is by reducing oxidative stress, thereby inhibiting subsequent lipid peroxidation and inflammatory responses. Herein, we tested the hypothesis that DOX directly scavenges reactive oxygen species (ROS) and inhibits the formation of redox-mediated malondialdehyde-acetaldehyde (MAA) protein adducts. Using a cell-free system, we demonstrated that DOX scavenged reactive oxygen species (ROS) produced during the formation of MAA-adducts and inhibits the formation of MAA-protein adducts. To determine whether DOX scavenges specific ROS, we examined the ability of DOX to directly scavenge superoxide and hydrogen peroxide. Using electron paramagnetic resonance (EPR) spectroscopy, we found that DOX directly scavenged superoxide, but not hydrogen peroxide. Additionally, we found that DOX inhibits MAA-induced activation of Nrf2, a redox-sensitive transcription factor. Together, these findings demonstrate the under-recognized direct antioxidant property of DOX that may help to explain its therapeutic potential in the treatment of conditions characterized by chronic inflammation and increased oxidative stress.


2013 ◽  
Vol 2013 ◽  
pp. 1-18 ◽  
Author(s):  
Sunil Joshi ◽  
Ammon B. Peck ◽  
Saeed R. Khan

A major role of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase family of enzymes is to catalyze the production of superoxides and other reactive oxygen species (ROS). These ROS, in turn, play a key role as messengers in cell signal transduction and cell cycling, but when they are produced in excess they can lead to oxidative stress (OS). Oxidative stress in the kidneys is now considered a major cause of renal injury and inflammation, giving rise to a variety of pathological disorders. In this review, we discuss the putative role of oxalate in producing oxidative stress via the production of reactive oxygen species by isoforms of NADPH oxidases expressed in different cellular locations of the kidneys. Most renal cells produce ROS, and recent data indicate a direct correlation between upregulated gene expressions of NADPH oxidase, ROS, and inflammation. Renal tissue expression of multiple NADPH oxidase isoforms most likely will impact the future use of different antioxidants and NADPH oxidase inhibitors to minimize OS and renal tissue injury in hyperoxaluria-induced kidney stone disease.


Antioxidants ◽  
2018 ◽  
Vol 7 (11) ◽  
pp. 169 ◽  
Author(s):  
Anna Dreyer ◽  
Karl-Josef Dietz

Cold temperatures restrict plant growth, geographical extension of plant species, and agricultural practices. This review deals with cold stress above freezing temperatures often defined as chilling stress. It focuses on the redox regulatory network of the cell under cold temperature conditions. Reactive oxygen species (ROS) function as the final electron sink in this network which consists of redox input elements, transmitters, targets, and sensors. Following an introduction to the critical network components which include nicotinamide adenine dinucleotide phosphate (NADPH)-dependent thioredoxin reductases, thioredoxins, and peroxiredoxins, typical laboratory experiments for cold stress investigations will be described. Short term transcriptome and metabolome analyses allow for dissecting the early responses of network components and complement the vast data sets dealing with changes in the antioxidant system and ROS. This review gives examples of how such information may be integrated to advance our knowledge on the response and function of the redox regulatory network in cold stress acclimation. It will be exemplarily shown that targeting the redox network might be beneficial and supportive to improve cold stress acclimation and plant yield in cold climate.


2017 ◽  
Vol 3 (1) ◽  
pp. 48 ◽  
Author(s):  
Oki Sandra Agnesa ◽  
Joko Waluyo ◽  
Jekti Prihatin ◽  
Sri Rahayu Lestari

Penyakit jantung koroner (PJK) terutama disebabkan oleh aterosklerosis karena hiperkolesterolimia. Oksidasi low density lipoprotein (LDL) oleh reactive oxygen species (ROS) sebagai penyebab utama proses aterogenik dapat dicegah dengan kehadiran antioksidan seperti vitamin E. Buah dan sayuran banyak mengandung vitamin. Salah satu buah yang mengandung vitamin E adalah buah merah (Pandanus conoideus Lam.). Penelitian ini bertujuan untuk mengetahui pengaruh pemberian ekstrak buah merah terhadap kadar LDL darah pada tikus putih (Rattus norvegicus L.). Jenis penelitian ini adalah penelitian eksperimental laboratorium yang didesain mengikuti Rancangan Acak Lengkap (RAL) dengan 6 perlakuan dan 4 kali ulangan dengan parameter penelitian adalah kadar LDL darah tikus putih. Data dianalisis menggunakan one way anova dilanjutkan dengan uji Duncan 95%. Berdasarkan hasil penelitian, minyak buah merah memiliki kemampuan untuk menurunkan kadar LDL darah tikus putih.


Sign in / Sign up

Export Citation Format

Share Document