Numerical Simulation of Damage of Aluminium Plate Subjected to Underwater Explosion

Author(s):  
M. Vijay ◽  
R.P. Suryapraba ◽  
K. Ramajeyathilagam

The numerical simulation performed on an aluminium plate of dimension 550*450*4 mm subjected to underwater explosion using finite element code LS-DYNA is presented in this paper. The box model setup along with the test plate is modelled using Lagrangian solid elements, the fluid and explosive are modelled using Eulerian solid elements with Gruneisan and Jones-Wilkins-Lee equation of state respectively. The fluid structure interactions are modelled using ALE coupling. Numerical simulation has been carried out for the aluminium plate under shock loads for various charge weights ranging from 30 to 60 g in steps of 10 g. The results of permanent deformation of aluminium plate for each shock factors are compared with the counterpart mild steel plates under the same conditions available in the literature.

2008 ◽  
Vol 22 (09n11) ◽  
pp. 1285-1290
Author(s):  
STANISLAV ROLC ◽  
JAROSLAV BUCHAR ◽  
ZBYNEK AKSTEIN

The interaction of the flying plate with the Long-rod penetrator has been studied both experimentally and numerically using the LS DYNA 3D finite element code. The influence of the plate velocity and plate material on this interaction has been investigated in details. Numerical results show that there was a relatively large damage of the projectiles. The extent of this damage well agree with our experimental foundings. The numerical simulation of the damaged projectiles with some targets has been also performed


2014 ◽  
Vol 60 (3) ◽  
pp. 323-334 ◽  
Author(s):  
G. Leonardi

Abstract The paper presents a numerical study of an aircraft wheel impacting on a flexible landing surface. The proposed 3D model simulates the behaviour of flexible runway pavement during the landing phase. This model was implemented in a finite element code in order to investigate the impact of repeated cycles of loads on pavement response. In the model, a multi-layer pavement structure was considered. In addition, the asphalt layer (HMA) was assumed to follow a viscoelastoplastic behaviour. The results demonstrate the capability of the model in predicting the permanent deformation distribution in the asphalt layer.


1995 ◽  
Vol 398 ◽  
Author(s):  
A.V. Bune ◽  
D.C. Gillies ◽  
S.L. Lehoczky

ABSTRACTA numerical model of heat transfer by combined conduction, radiation and convection was developed using the FIDAP finite element code for NASA's Advanced Automated Directional Solidification Furnace (AADSF). The prediction of the temperature gradient in an ampoule with HgCdTe is a necessity for the evaluation of whether or not the temperature set points for furnace heaters and the details of cartridge design ensure optimal crystal growth conditions for this material and size of crystal. A prediction of crystal/melt interface shape and the flow patterns in HgCdTe are available using a separate complementary model.


2014 ◽  
Vol 2014 ◽  
pp. 1-17 ◽  
Author(s):  
Elsayed Fathallah ◽  
Hui Qi ◽  
Lili Tong ◽  
Mahmoud Helal

A numerical simulation has been carried out to examine the response of steel plates with different arrangement of stiffeners and subjected to noncontact underwater explosion (UNDEX) with different shock loads. Numerical analysis of the underwater explosion phenomena is implemented in the nonlinear finite element code ABAQUS/Explicit. The aim of this work is to enhance the dynamic response to resist UNDEX. Special emphasis is focused on the evolution of mid-point displacements. Further investigations have been performed to study the effects of including material damping and the rate-dependant material properties at different shock loads. The results indicate that stiffeners configurations and shock loads affect greatly the overall performance of steel plates and sensitive to the materials data. Also, the numerical results can be used to obtain design guidelines of floating structures to enhance resistance of underwater shock damage, since explosive tests are costly and dangerous.


Author(s):  
Mohammad Reza Khedmati ◽  
Mehran Rastani

The objective of this study is to investigate the sensitivity of the ultimate strength and failure mechanism of stiffened plates constructed by different welding methods in common. A series of detailed numerical analyses of longitudinally stiffened steel plates subjected to inplane compressive load are performed using ADINA commercial finite element code. Complete equilibrium paths are traced up to collapse for nonlinear elastoplastic response of stiffened plates. Stiffened plates analysed are imperfect and their aspect ratio, plate slenderness and column slenderness are changed in a systematic manner. Different types of stiffener are chosen for stiffened plate models. Three different stiffener-to-plate welding procedures are considered: continuous, chain intermittent and staggered intermittent fillet welding.


2011 ◽  
Vol 239-242 ◽  
pp. 392-397
Author(s):  
Xue Feng Xu ◽  
Ning Li ◽  
Gao Chao Wang ◽  
Hong Bo Dong

A thermal-mechanical coupled analysis of superplastic differential temperature deep drawing (SDTDD) with the MARC finite element code is performed in this paper. Initial drawing blank of an AA5083 bracket was calculated and adjusted according to the simulation result. During the SDTDD simulation, the power-law constitutive model of AA5083 was established as function of temperature and implanted in software MARC through new complied subroutine. Under the guide of the numerical simulation, the die was fabricated and the AA5083 bracket was successfully manufactured via superplastic differential temperature deep drawing. In forming practice, the temperature of female die was kept at 525°C, i.e. the optimal superplastic temperature of AA5083, and the punch was cooled by the flowing water throughout the forming process. The drawing velocity of punch was 0.1mm/s. Results revealed that the formed bracket had a sound uniform thickness distribution. Good agreement was obtained between the formed thickness profiles and the predicted ones.


2014 ◽  
Vol 668-669 ◽  
pp. 490-493 ◽  
Author(s):  
Wei Hu ◽  
Yong Hu Wang ◽  
Cai Hua Chen

Aircraft Ditching is related primarily with the aviation safety. Firstly, the full-scaled shape of Boeing 777-200 is modeled according to the lost MH370 aircraft on 8th March. And then an Arbitrary Lagrange-Euler (ALE) fluid-field model is created for water and air domain. Next some simulation cases are implemented related to different vertical velocities using LS-DYNA nonlinear finite-element code, with the same horizontal velocity and attack angle. At the same time, the variations of the velocity of the head and tail are discussed. Consequently, Ditching overload peak occurs at the highest vertical velocity. The simulation results can deeply be applied to accident analysis of aircraft impacting on water.


2013 ◽  
Vol 753-755 ◽  
pp. 1002-1006 ◽  
Author(s):  
Wen Yuan Meng ◽  
Jun Qiang Hu ◽  
Xin Liu

Combination of ice blasting model is set up with the program of blasting with technology of shaped charge, numerical calculation is carried out, and the shockwave peak pressure in ice medium is obtained based on the large-scale finite element software ANSYS/LS-DYNA . This paper analyzes the stress distribution of ice in the combination of underwater explosion loads, and studies the process of the underwater explosion. The article aims to promote the application and research of underwater explosion in Yellow River and Hei Long Jiang River ice blasting, etc.


Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 141
Author(s):  
Yahui Shi ◽  
Ang Hu ◽  
Taisheng Du ◽  
Xinke Xiao ◽  
Bin Jia

To demonstrate the importance of incorporating Lode angle into fracture criterion in predicting the penetration resistance of high-strength steel plates, ballistic tests of blunt-nosed projectiles with a diameter of 5.95 mm impacted 4 mm thick Weldox 900 E steel plates were conducted. Impacting velocity range was 136.63~381.42 m/s. The fracture behavior and the ballistic limit velocities (BLVs) were obtained by fitting the initial-residual velocities of the projectiles. Subsequently, axisymmetric finite element (FE) models parallel to the tests were built by using Abaqus/Explicit software, and the Lode-independent Johnson–Cook (JC) and the Lode-dependent ASCE fracture criterion were incorporated into the finite element model for numerical simulation. Meanwhile, to verify the sensitivity of the mesh size in the numerical simulation, different mesh sizes were used in the shear plug area of the target. It can be found that Weldox 900 E steel has obvious mesh size sensitivity by comparing the experimental results and numerical simulation, and the JC fracture criterion and the ASCE fracture criterion predicted similar BLV for the same mesh size.


Sign in / Sign up

Export Citation Format

Share Document