scholarly journals Farmers’ spatial behaviour, demographic density dependence and the spread of Neolithic agriculture in Central Europe

2015 ◽  
Vol 42 ◽  
Author(s):  
Serge Svizzero

Since the early 1970s, the demic diffusion model is the cornerstone of the migrationist approach of the European neolithization. It considers the latter as a slow, gradual and unintentionally process. During the last decade its relevance has been challenged by the observed variability of the spread, such as the extreme one exhibited by the LBK expansion in Central Europe. To account for it, migration - which is usually explained by exogenous push-pull factors - must rather be viewed as the result of farmers’ spatial behaviour. We adopt this approach and highlight the influence on farmers’ location choice of agglomeration effects and Allee effect in settled areas, an influence which also leads to define migration endogenously. Both effects – which find support in archaeological records - exhibit demographic density dependence and help to explain an observed but counter-intuitive result. Indeed, a high demographic density is associated with a slower rate of expansion of farming; this may result from strong agglomeration and Allee effects which hinder – or even stop - the migratory spread of agriculture. Farmers’ cooperation with indigenous populations are leading to acculturation of the latter and therefore may reduce the influence of both effects, fostering farmers’ migration.

2021 ◽  
Vol 29 (1) ◽  
Author(s):  
Kamrun Nahar Keya ◽  
Md. Kamrujjaman ◽  
Md. Shafiqul Islam

AbstractIn this paper, we consider a reaction–diffusion model in population dynamics and study the impact of different types of Allee effects with logistic growth in the heterogeneous closed region. For strong Allee effects, usually, species unconditionally die out and an extinction-survival situation occurs when the effect is weak according to the resource and sparse functions. In particular, we study the impact of the multiplicative Allee effect in classical diffusion when the sparsity is either positive or negative. Negative sparsity implies a weak Allee effect, and the population survives in some domain and diverges otherwise. Positive sparsity gives a strong Allee effect, and the population extinct without any condition. The influence of Allee effects on the existence and persistence of positive steady states as well as global bifurcation diagrams is presented. The method of sub-super solutions is used for analyzing equations. The stability conditions and the region of positive solutions (multiple solutions may exist) are presented. When the diffusion is absent, we consider the model with and without harvesting, which are initial value problems (IVPs) and study the local stability analysis and present bifurcation analysis. We present a number of numerical examples to verify analytical results.


2015 ◽  
Vol 2 (6) ◽  
pp. 150034 ◽  
Author(s):  
Akira Terui ◽  
Yusuke Miyazaki ◽  
Akira Yoshioka ◽  
Shin-ichiro S. Matsuzaki

Current theories predict that Allee effects should be widespread in nature, but there is little consistency in empirical findings. We hypothesized that this gap can arise from ignoring spatial contexts (i.e. spatial scale and heterogeneity) that potentially mask an existing fitness–density relationship: a ‘cryptic’ Allee effect. To test this hypothesis, we analysed how spatial contexts interacted with conspecific density to influence the fertilization rate of the freshwater mussel Margaritifera laevis . This sessile organism has a simple fertilization process whereby females filter sperm from the water column; this system enabled us to readily assess the interaction between conspecific density and spatial heterogeneity (e.g. flow conditions) at multiple spatial levels. Our findings were twofold. First, positive density-dependence in fertilization was undetectable at a population scale (approx. less than 50.5 m 2 ), probably reflecting the exponential decay of sperm density with distance from the sperm source. Second, the Allee effect was confirmed at a local level (0.25 m 2 ), but only when certain flow conditions were met (slow current velocity and shallow water depth). These results suggest that spatial contexts can mask existing Allee effects.


Author(s):  
Jia Liu

In this study, we consider a diffusive predator–prey model with multiple Allee effects induced by fear factors. We investigate the existence, boundedness and permanence of the solution of the system. We also discuss the existence and non-existence of non-constant solutions. We derive sufficient conditions for spatially homogeneous (non-homogenous) Hopf bifurcation and steady state bifurcation. Theoretical and numerical simulations show that strong Allee effect and fear effect have great effect on the dynamics of system.


2019 ◽  
pp. 63-80
Author(s):  
Gary G. Mittelbach ◽  
Brian J. McGill

This chapter reviews the basic mathematics of population growth as described by the exponential growth model and the logistic growth model. These simple models of population growth provide a foundation for the development of more complex models of species interactions covered in later chapters on predation, competition, and mutualism. The second half of the chapter examines the important topic of density-dependence and its role in population regulation. The preponderance of evidence for negative density-dependence in nature is reviewed, along with examples of positive density dependence (Allee effects). The study of density dependence in single-species populations leads naturally to the concept of community-level regulation, the idea that species richness or the total abundance of individuals in a community may be regulated just like abundance in a single-species population. The chapter concludes with a look at the evidence for community regulation in nature and a discussion of its importance.


2008 ◽  
Vol 73 (3) ◽  
pp. 441-463 ◽  
Author(s):  
Scott W. J. Martin

Archaeological accounts of the spread of agriculture tend to favor either (im)migration/demic diffusion or in situ development/stimulus diffusion. Having moved away from the early twentieth-century's community-wide migration model for Iroquoian origins in the Lower Great Lakes region and southern Ontario in particular, orthodox archaeological belief over the past half-century had come to place Northern Iroquoian speakers in the area since at least 2,000 years ago and likely much earlier. In what appear to be modified versions of the older migrationist arguments, contemporary thought within archaeology once more seems to allow that wholesale relocations were responsible for bringing farming into the region. It has been suggested, for example, that Northern Iroquoian speakers entered southern Ontario as recently as the early or middle centuries of the first millennium A.D. In this paper, I recount the routes this debate has taken and show that the appearance of maize (Zea mays) agriculture, alongside a few other materials, has come to be bound up with documenting the arrival of Northern Iroquoian-speaking communities. I conclude by reiterating the cautions advised by a number of researchers for how we read past ethnicity from archaeological materials and the role this plays in contemporary political discourse between First Nations and others.


10.2307/3790 ◽  
1978 ◽  
Vol 47 (2) ◽  
pp. 383 ◽  
Author(s):  
L. R. Taylor ◽  
I. P. Woiwod ◽  
J. N. Perry

2014 ◽  
Vol 1 (2) ◽  
pp. 140075 ◽  
Author(s):  
Anna Kuparinen ◽  
Jeffrey A. Hutchings

Negative density-dependent regulation of population dynamics promotes population growth at low abundance and is therefore vital for recovery following depletion. Inversely, any process that reduces the compensatory density-dependence of population growth can negatively affect recovery. Here, we show that increased adult mortality at low abundance can reverse compensatory population dynamics into its opposite—a demographic Allee effect. Northwest Atlantic cod ( Gadus morhua ) stocks collapsed dramatically in the early 1990s and have since shown little sign of recovery. Many experienced dramatic increases in natural mortality, ostensibly attributable in some populations to increased predation by seals. Our findings show that increased natural mortality of a magnitude observed for overfished cod stocks has been more than sufficient to fundamentally alter the dynamics of density-dependent population regulation. The demographic Allee effect generated by these changes can slow down or even impede the recovery of depleted populations even in the absence of fishing.


2020 ◽  
Vol 25 (3) ◽  
Author(s):  
Ankit Kumar ◽  
Balram Dubey

This study proposes two prey–predator models with strong and weak Allee effects in prey population with Crowley–Martin functional response. Further, gestation delay of the predator population is introduced in both the models. We discussed the boundedness, local stability and Hopf-bifurcation of both nondelayed and delayed systems. The stability and direction of Hopfbifurcation is also analyzed by using Normal form theory and Center manifold theory. It is shown that species in the model with strong Allee effect become extinct beyond a threshold value of Allee parameter at low density of prey population, whereas species never become extinct in weak Allee effect if they are initially present. It is also shown that gestation delay is unable to avoiding the status of extinction. Lastly, numerical simulation is conducted to verify the theoretical findings. 


2016 ◽  
Author(s):  
Meike J. Wittmann ◽  
Hanna Stuis ◽  
Dirk Metzler

SummaryIt is now widely accepted that genetic processes such as inbreeding depression and loss of genetic variation can increase the extinction risk of small populations. However, it is generally unclear whether extinction risk from genetic causes gradually increases with decreasing population size or whether there is a sharp transition around a specific threshold population size. In the ecological literature, such threshold phenomena are called “strong Allee effects” and they can arise for example from mate limitation in small populations.In this study, we aim to a) develop a meaningful notion of a “strong genetic Allee effect”, b) explore whether and under what conditions such an effect can arise from inbreeding depression due to recessive deleterious mutations, and c) quantify the interaction of potential genetic Allee effects with the well-known mate-finding Allee effect.We define a strong genetic Allee effect as a genetic process that causes a population’s survival probability to be a sigmoid function of its initial size. The inflection point of this function defines the critical population size. To characterize survival-probability curves, we develop and analyze simple stochastic models for the ecology and genetics of small populations.Our results indicate that inbreeding depression can indeed cause a strong genetic Allee effect, but only if individuals carry sufficiently many deleterious mutations (lethal equivalents) on average and if these mutations are spread across sufficiently many loci. Populations suffering from a genetic Allee effect often first grow, then decline as inbreeding depression sets in, and then potentially recover as deleterious mutations are purged. Critical population sizes of ecological and genetic Allee effects appear to be often additive, but even superadditive interactions are possible.Many published estimates for the number of lethal equivalents in birds and mammals fall in the parameter range where strong genetic Allee effects are expected. Unfortunately, extinction risk due to genetic Allee effects can easily be underestimated as populations with genetic problems often grow initially, but then crash later. Also interactions between ecological and genetic Allee effects can be strong and should not be neglected when assessing the viability of endangered or introduced populations.


Sign in / Sign up

Export Citation Format

Share Document