scholarly journals Co-existence of NDM-1 and OXA-48 genes in Carbapenem Resistant Klebsiella pneumoniae clinical isolates in Kafrelsheikh, Egypt

2021 ◽  
Vol 21 (2) ◽  
pp. 489-496
Author(s):  
Ramadan Ahmed El-Domany ◽  
Tarek El-Banna ◽  
Fatma Sonbol ◽  
Samar Hamed Abu-Sayedahmed

Background: The noteworthy spread of carbapenem-resistant K. pneumoniae (CR-KP) isolates represents a significant safety threat. Objective: Determination of the carbapenemase genes incidence among CR-KP clinical isolates in Kafrelsheikh, Egypt. Methods: A total of 230 K. pneumoniae isolates were recovered from four hospitals in Kafrelsheikh, Egypt. Susceptibility testing was conducted using Kirby-Bauer method and automated-Vitek2 system. CR-KP isolates were tested using modified Hodge test (MHT) and combined disk synergy test. PCR and DNA sequencing were conducted for CR-KP isolates to rec- ognize the included carbapenemase-genes. Results: Out of 230 K. pneumoniae isolates, 50 isolates presented resistance to carbapenem (meropenem). All 50 CR-KP iso- lates were multidrug-resistant (MDR). Genes like blaNDM-1 and blaOXA-48 were the only detected genes among CR-KP with an incidence of 70.0% and 52.0%, respectively. Up to 74.0% of the tested isolates carried at least one of the two record- ed genes, among them 48.0% co-harbored both blaNDM-1 and blaOXA-48 genes. The accession-numbers of sequenced blaNDM-1 and blaOXA-48 genes were MG594615 and MG594616, respectively. Conclusion: This study reported a high incidence of MDR profile with the emergence of blaNDM-1 and blaOXA-48 genes co-existence in CR-KP isolates in Kafrelsheikh, Egypt. Hence, more restrictions should be applied against the spread of such serious pathogens. Keywords: Klebsiella pneumoniae; Egypt; carbapenem resistance; MDR; PCR; blaNDM-1; blaOXA-48; sequencing. 

2021 ◽  
Author(s):  
Namrata Kumari ◽  
Mukesh Kumar ◽  
Amit Katiyar ◽  
Abhay Kumar ◽  
Pallavi Priya ◽  
...  

Abstract Carbapenemase-producing clinical isolates are becoming more common over the world, posing a severe public health danger, particularly in developing nations like India. Carbapenem-resistant Gram-negative bacterial (CR-GNB) infection has become a fast-expending global threat with limited antibiotic choice and significant mortality. The aim of this study was to highlight the carbapenem-resistance among clinical isolates of hospital admitted patients in Bihar, India. A cross-sectional study was conducted with 101 clinical isolates of E. coli, K. pneumoniae, A. baumannii, and P. aeruginosa. All GNB isolates were tested for their antimicrobial susceptibility using double disc synergy test / modified hodge test (DDST/MHT) and subsequently confirmed carbapenemase-producing isolates were evaluated for carbapenem-resistance genes using whole-genome sequencing (genotypically) method. The overall percentage of carbapenem-resistance among GNB was (17/101) 16.83%. The AMR analysis demonstrates a significantly high prevalence of blaCTX−M followed by blaSHV, blaTEM, blaOXA and blaNDM β-lactams carbapenem-resistance genes among clinical isolates of GNB. Co-occurrence of carbapenemase-encoding genes with blaNDM was found in 70.6% of carbapenemase-producing isolates. Our study highlights the mechanism of carbapenem-resistance to curb the overwhelming threat posed by emergence of drug-resistance in India.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0247058
Author(s):  
Catarina Ferreira ◽  
Santosh K. Bikkarolla ◽  
Karolin Frykholm ◽  
Saga Pohjanen ◽  
Margarida Brito ◽  
...  

Carbapenem-resistant Klebsiella pneumoniae are a major global threat in healthcare facilities. The propagation of carbapenem resistance determinants can occur through vertical transmission, with genetic elements being transmitted by the host bacterium, or by horizontal transmission, with the same genetic elements being transferred among distinct bacterial hosts. This work aimed to track carbapenem resistance transmission by K. pneumoniae in a healthcare facility. The study involved a polyphasic approach based on conjugation assays, resistance phenotype and genotype analyses, whole genome sequencing, and plasmid characterization by pulsed field gel electrophoresis and optical DNA mapping. Out of 40 K. pneumoniae clinical isolates recovered over two years, five were carbapenem- and multidrug-resistant and belonged to multilocus sequence type ST147. These isolates harboured the carbapenemase encoding blaKPC-3 gene, integrated in conjugative plasmids of 140 kbp or 55 kbp, belonging to replicon types incFIA/incFIIK or incN/incFIIK, respectively. The two distinct plasmids encoding the blaKPC-3 gene were associated with distinct genetic lineages, as confirmed by optical DNA mapping and whole genome sequence analyses. These results suggested vertical (bacterial strain-based) transmission of the carbapenem-resistance genetic elements. Determination of the mode of transmission of antibiotic resistance in healthcare facilities, only possible based on polyphasic approaches as described here, is essential to control resistance propagation.


2018 ◽  
Vol 62 (10) ◽  
Author(s):  
Johanne Blais ◽  
Sara Lopez ◽  
Cindy Li ◽  
Alexey Ruzin ◽  
Srijan Ranjitkar ◽  
...  

ABSTRACTLYS228 is a novel monobactam with potent activity againstEnterobacteriaceae. LYS228 is stable to metallo-β-lactamases (MBLs) and serine carbapenemases, includingKlebsiella pneumoniaecarbapenemases (KPCs), resulting in potency against the majority of extended-spectrum β-lactamase (ESBL)-producing and carbapenem-resistantEnterobacteriaceaestrains tested. Overall, LYS228 demonstrated potent activity against 271Enterobacteriaceaestrains, including multidrug-resistant isolates. Based on MIC90values, LYS228 (MIC90, 1 μg/ml) was ≥32-fold more active against those strains than were aztreonam, ceftazidime, ceftazidime-avibactam, cefepime, and meropenem. The tigecycline MIC90was 4 μg/ml against the strains tested. AgainstEnterobacteriaceaeisolates expressing ESBLs (n= 37) or displaying carbapenem resistance (n= 77), LYS228 had MIC90values of 1 and 4 μg/ml, respectively. LYS228 exhibited potent bactericidal activity, as indicated by low minimal bactericidal concentration (MBC) to MIC ratios (MBC/MIC ratios of ≤4) against 97.4% of theEnterobacteriaceaestrains tested (264/271 strains). In time-kill studies, LYS228 consistently achieved reductions in CFU per milliliter of 3 log10units (≥99.9% killing) at concentrations ≥4× MIC forEscherichia coliandK. pneumoniaereference strains, as well as isolates encoding TEM-1, SHV-1, CTX-M-14, CTX-M-15, KPC-2, KPC-3, and NDM-1 β-lactamases.


Pathogens ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1552
Author(s):  
Chung-Lin Sung ◽  
Wei-Chun Hung ◽  
Po-Liang Lu ◽  
Lin Lin ◽  
Liang-Chun Wang ◽  
...  

Owing to the over usage of carbapenems, carbapenem resistance has become a vital threat worldwide, and, thus, the World Health Organization announced the carbapenem-resistant Enterobacteriaceae (CRE) as the critical priority for antibiotic development in 2017. In the current situation, combination therapy would be one solution against CRE. Azidothymidine (AZT), a thymidine analog, has demonstrated its synergistically antibacterial activities with other antibiotics. The unexpected antimicrobial activity of the immunomodulator ammonium trichloro(dioxoethylene-o,o’)tellurate (AS101) has been reported against carbapenem-resistant Klebsiella pneumoniae (CRKP). Here, we sought to investigate the synergistic activity between AS101 and AZT against 12 CRKP clinical isolates. According to the gene detection results, the blaOXA-1 (7/12, 58.3%), blaDHA (7/12, 58.3%), and blaKPC (7/12, 58.3%) genes were the most prevalent ESBL, AmpC, and carbapenemase genes, respectively. The checkerboard analysis demonstrated the remarkable synergism between AS101 and AZT, with the observable decrease in the MIC value for two agents and the fractional inhibitory concentration (FIC) index ≤0.5 in all strains. Hence, the combination of AS101 and azidothymidine could be a potential treatment option against CRKP for drug development.


2006 ◽  
Vol 50 (10) ◽  
pp. 3396-3406 ◽  
Author(s):  
Frank M. Kaczmarek ◽  
Fadia Dib-Hajj ◽  
Wenchi Shang ◽  
Thomas D. Gootz

ABSTRACT Clinical isolates of Klebsiella pneumoniae resistant to carbapenems and essentially all other antibiotics (multidrug resistant) are being isolated from some hospitals in New York City with increasing frequency. A highly related pair of K. pneumoniae strains isolated on the same day from one patient in a hospital in New York City were studied for antibiotic resistance. One (KP-2) was resistant to imipenem, meropenem, and sulopenem (MICs of 16 to 32 μg/ml) while the other (KP-1) was susceptible (MIC of 0.5 μg/ml); both contained the bla ACT-1, bla SHV-1, and bla TEM-1 β-lactamases. bla ACT-1 in both strains was encoded on a large ∼150-kb plasmid. Both isolates contained an identical class 1 integron encoding resistance to aminoglycosides and chloramphenicol. They each had identical insertions in ompK35 and ompK36, resulting in disruption of these key porin genes. The carbapenem-resistant and -susceptible isolates were extensively studied for differences in the structural and regulatory genes for the operons acrRAB, marORAB, romA-ramA, soxRS, micF, micC, phoE, phoBR, rpoS, and hfq. No changes were detected between the isolates except for a significant down-regulation of ompK37, phoB, and phoE in KP-2 as deduced from reverse transcription-PCR analysis of mRNA and polyacrylamide gel electrophoresis separation of outer membrane proteins. Backcross analysis was conducted using the wild-type phoE gene cloned into the vector pGEM under regulation of its native promoter as well as the lacZ promoter following transformation into the resistant KP-2 isolate. The wild-type gene reversed carbapenem resistance only when under control of the heterologous lacZ promoter. In the background of ompK35-ompK36 gene disruption, the up-regulation of phoE in KP-1 apparently compensated for porin loss and conferred carbapenem susceptibility. Down-regulation of phoE in KP-2 may represent the normal state of this gene, or it may have been selected from KP-1 in vivo under antibiotic pressure, generating the carbapenem-resistant clone. This is the first study in the Enterobacteriaceae where expression of the phosphate-regulated PhoE porin has been associated with resistance to antimicrobials. Our results with this pair of Klebsiella clinical isolates highlight the complex and evolving nature of multiple drug resistance in this species.


mSystems ◽  
2019 ◽  
Vol 4 (4) ◽  
Author(s):  
Muyoung Lee ◽  
Naina Adren Pinto ◽  
Chan Yeong Kim ◽  
Sunmo Yang ◽  
Roshan D’Souza ◽  
...  

ABSTRACTGlobal increases in the use of carbapenems have resulted in several strains of Gram-negative bacteria acquiring carbapenem resistance, thereby limiting treatment options.Klebsiella pneumoniaeis a common carbapenem-resistant pathogenic bacterium that is widely studied to identify novel antibiotic resistance mechanisms and drug targets. Antibiotic-resistant clinical isolates generally harbor many genetic alterations, and the identification of responsible mutations would provide insights into the molecular mechanisms of antibiotic resistance. We propose a method to prioritize mutated genes responsible for antibiotic resistance on the basis of expression changes in their local subnetworks, hypothesizing that mutated genes that show significant expression changes among the corresponding functionally associated genes are more likely to be involved in the carbapenem resistance. For network-based gene prioritization, we developed KlebNet (www.inetbio.org/klebnet), a genome-scale cofunctional network ofK. pneumoniaegenes. Using KlebNet, we reconstructed the functional modules for carbapenem resistance and virulence and identified the functional association between antibiotic resistance and virulence. Using complementation assays with the top candidate genes, we were able to validate a novel gene that negatively regulated carbapenem resistance and four novel genes that positively regulated virulence inGalleria mellonellalarvae. Therefore, our study demonstrated the feasibility of network-based identification of genes required for antibiotic resistance and virulence of human-pathogenic bacteria.IMPORTANCEKlebsiella pneumoniaeis a major bacterial pathogen that causes pneumonia and urinary tract infections in human.K. pneumoniaeinfections are treated with carbapenem, but carbapenem-resistantK. pneumoniaehas been spreading worldwide. We are able to identify antimicrobial-resistant genes among mutated genes of the antibiotic-resistant clinical isolates. However, they usually harbor many mutated genes, including those that cause weak or neutral functional effects. Therefore, we need to prioritize the mutated genes to identify the more likely candidates for the follow-up functional analysis. For this study, we present a functional network ofK. pneumoniaegenes and propose a network-based method of prioritizing the mutated genes of the resistant clinical isolates. We also reconstructed the network-based functional modules for carbapenem resistance and virulence and retrieved the functional association between antibiotic resistance and virulence. This study demonstrated the feasibility of network-based analysis of clinical genomics data for the study ofK. pneumoniaeinfection.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Kristen A. Eller ◽  
Thomas R. Aunins ◽  
Colleen M. Courtney ◽  
Jocelyn K. Campos ◽  
Peter B. Otoupal ◽  
...  

AbstractMultidrug-resistant (MDR) bacteria pose a grave concern to global health, which is perpetuated by a lack of new treatments and countermeasure platforms to combat outbreaks or antibiotic resistance. To address this, we have developed a Facile Accelerated Specific Therapeutic (FAST) platform that can develop effective peptide nucleic acid (PNA) therapies against MDR bacteria within a week. Our FAST platform uses a bioinformatics toolbox to design sequence-specific PNAs targeting non-traditional pathways/genes of bacteria, then performs in-situ synthesis, validation, and efficacy testing of selected PNAs. As a proof of concept, these PNAs were tested against five MDR clinical isolates: carbapenem-resistant Escherichia coli, extended-spectrum beta-lactamase Klebsiella pneumoniae, New Delhi Metallo-beta-lactamase-1 carrying Klebsiella pneumoniae, and MDR Salmonella enterica. PNAs showed significant growth inhibition for 82% of treatments, with nearly 18% of treatments leading to greater than 97% decrease. Further, these PNAs are capable of potentiating antibiotic activity in the clinical isolates despite presence of cognate resistance genes. Finally, the FAST platform offers a novel delivery approach to overcome limited transport of PNAs into mammalian cells by repurposing the bacterial Type III secretion system in conjunction with a kill switch that is effective at eliminating 99.6% of an intracellular Salmonella infection in human epithelial cells.


2010 ◽  
Vol 54 (6) ◽  
pp. 2732-2734 ◽  
Author(s):  
Carl Urban ◽  
Noriel Mariano ◽  
James J. Rahal

ABSTRACT In vitro double and triple bactericidal activities of doripenem, polymyxin B, and rifampin were assessed against 20 carbapenem-resistant clinical isolates with different mechanisms of carbapenem resistance. Bactericidal activity was achieved in 90% of all bacteria assayed using combinations of polymyxin B, doripenem, and rifampin against five each of the carbapenem-resistant Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Escherichia coli isolates studied. Combinations with these antibacterials may provide a strategy for treatment of patients infected with such organisms.


2021 ◽  
Vol 70 (1) ◽  
pp. 107-116
Author(s):  
DOROTA OCHOŃSKA ◽  
HANNA KLAMIŃSKA-CEBULA ◽  
ANNA DOBRUT ◽  
MAŁGORZATA BULANDA ◽  
MONIKA BRZYCHCZY-WŁOCH

Carbapenem-resistant Klebsiella pneumoniae (CRKP) is an important bacterium of nosocomial infections. In this study, CRKP strains, which were mainly isolated from fecal samples of 14 patients in three wards of the hospital in the Silesia Voivodship, rapidly increased from February to August 2018. Therefore, we conducted microbiological and molecular studies of the CRKP isolates analyzed. Colonized patients had critical underlying diseases and comorbidities; one developed bloodstream infection, and five died (33.3%). Antibiotic susceptibilities were determined by the E-test method. A disc synergy test confirmed carbapenemase production. CTX-Mplex PCR evaluated the presence of resistance genes blaCTX-M-type, blaCTX-M-1, blaCTX-M-9, and the genes blaSHV, blaTEM, blaKPC-2, blaNDM-1, blaOXA-48, blaIMP, and blaVIM-1 was detected with the PCR method. Clonality was evaluated by Multi Locus Sequence Typing (MLST) and Pulsed Field Gel Electrophoresis (PFGE). Six (40%) strains were of XDR (Extensively Drug-Resistant) phenotype, and nine (60%) of the isolates exhibited MDR (Multidrug-Resistant) phenotype. The range of carbapenem minimal inhibitory concentrations (MICs, μg/mL) was as follows doripenem (16 to > 32), ertapenem (> 32), imipenem (4 to > 32), and meropenem (> 32). PCR and sequencing confirmed the blaCTX-M-15, blaKPC-2, blaOXA-48, and blaVIM-1 genes in all strains. The isolates formed one large PFGE cluster (clone A). MLST assigned them to the emerging high-risk clone of ST147 (CC147) pandemic lineage harboring the blaOXA-48 gene. This study showed that the K. pneumoniae isolates detected in the multi-profile medical centre in Katowice represented a single strain of the microorganism spreading in the hospital environment.


2006 ◽  
Vol 50 (5) ◽  
pp. 1633-1641 ◽  
Author(s):  
John Quale ◽  
Simona Bratu ◽  
Jyoti Gupta ◽  
David Landman

ABSTRACT Carbapenems are important agents for the therapy of infections due to multidrug-resistant Pseudomonas aeruginosa; the development of carbapenem resistance hampers effective therapeutic options. To assess the mechanisms leading to resistance, 33 clinical isolates with differing degrees of carbapenem susceptibility were analyzed for the expression of the chromosomal β-lactamase (ampC), the porin that is important for the entry of carbapenems (oprD), and the proteins involved in four efflux systems (mexA, mexC, mexE, and mexX). Real-time reverse transcriptase PCR was performed using primers and fluorescent probes for each of the target genes. The sequencing of regulatory genes (ampR, mexR, nalC, nalD, mexT, and mexZ) was also performed. Diminished expression of oprD was present in all imipenem- and meropenem-resistant isolates but was not required for ertapenem resistance. Increased expression of ampC was not observed in several isolates that were overtly resistant to carbapenems. Increased expression of several efflux systems was observed in many of the carbapenem-resistant isolates. Increased efflux activity correlated with high-level ertapenem resistance and reduced susceptibility to meropenem and aztreonam. Most isolates with increased expression of mexA had mutations affecting nalC and/or nalD. Two isolates with mutations leading to a premature stop codon in mexZ had markedly elevated mexX expressions, although mutations in mexZ were not a prerequisite for overexpression. β-Lactam resistance in clinical isolates of P. aeruginosa is a result of the interplay between diminished production of oprD, increased activity of ampC, and several efflux systems.


Sign in / Sign up

Export Citation Format

Share Document