scholarly journals MODELLING OF RESPONSES FROM ORTHOGONAL METAL CUTTING OF MILD STEEL USING CARBIDE INSERT TOOL

2016 ◽  
Vol 36 (1) ◽  
pp. 96-109
Author(s):  
MK Onifade ◽  
AC Igboanugo ◽  
JO Osarenmwinda

The purpose of this research was to develop models for the prediction of responses from orthogonal metal cutting process that are responsible for the machinability ratings of this technological system. Mild steel work-piece material that is representative sample for various industrial applications was machined. The various industrial applications of this representative sample range from mechanical shafts to fasteners, screws and hydraulic jack. These machine elements require high degree of surface finish. A fifteen-run based Box-Behnken response surface design was created using widely established machining parameters, namely cutting speed, feed rate and depth of cut. The optimum predicted responses from the orthogonal cutting process for the optimal process parameters are 0.1742 micron, 0.4933 micron, 0.1845 micron, 0.3673 micron, 794.6839 seconds and 19.642 seconds for the Ra, Rz, Rq, Rt, TL and M/C time respectively. The associated desirabilities for these optimum responses are 1.000000, 1.000000, 1.000000, 1.000000, 0.524122, and 0.361858 respectively.   http://dx.doi.org/10.4314/njt.v36i1.13

2017 ◽  
Vol 867 ◽  
pp. 119-126
Author(s):  
S. Muthusamy ◽  
A Arulmurugu

In modern years, simulating metal cutting process used in Finite element method (FEM). The cutting force is used to identify the excessive friction of machining interface and worn out tool. Optimization of machining parameters are used to maintain the precision of the component, power consumption minimized and tool wear reduced. The current project presents the simulated Finite Element SPH Model used for predict the cutting force and associate with experimental confirmation while turning the AA2219-TiB2/ZrB2 metal matrix composites (MMC). Smooth Particle Hydrodynamics (SPH) machining simulation was carried out using a Lagrangian finite element based machining model to predict the cutting force. The turning simulation operation carried out using ANSYS AUTODYN (SPH) software. Machining parameters are cutting speed, feed rate and depth of cut. The results predicted from the SPH analysis virtually close to the results attained from the experimental work. Simulation of machining test using SPH model is preferred over actual cutting test because of it reduce cost and time.


Metals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1338
Author(s):  
Lakshmanan Selvam ◽  
Pradeep Kumar Murugesan ◽  
Dhananchezian Mani ◽  
Yuvaraj Natarajan

Over the past decade, the focus of the metal cutting industry has been on the improvement of tool life for achieving higher productivity and better finish. Researchers are attempting to reduce tool failure in several ways such as modified coating characteristics of a cutting tool, conventional coolant, cryogenic coolant, and cryogenic treated insert. In this study, a single layer coating was made on cutting carbide inserts with newly determined thickness. Coating thickness, presence of coating materials, and coated insert hardness were observed. This investigation also dealt with the effect of machining parameters on the cutting force, surface finish, and tool wear when turning Ti-6Al-4V alloy without coating and Physical Vapor Deposition (PVD)-AlCrN coated carbide cutting inserts under cryogenic conditions. The experimental results showed that AlCrN-based coated tools with cryogenic conditions developed reduced tool wear and surface roughness on the machined surface, and cutting force reductions were observed when a comparison was made with the uncoated carbide insert. The best optimal parameters of a cutting speed (Vc) of 215 m/min, feed rate (f) of 0.102 mm/rev, and depth of cut (doc) of 0.5 mm are recommended for turning titanium alloy using the multi-response TOPSIS technique.


1965 ◽  
Vol 87 (4) ◽  
pp. 480-486 ◽  
Author(s):  
J. D. Cumming ◽  
S. Kobayashi ◽  
E. G. Thomsen

The mechanics of orthogonal cutting have been reexamined and for the shear-plane concept of metal cutting, linear and quadratic-force models were suggested. It was shown that for steel SAE-1213, investigated under variable cutting conditions, the dynamic shearing stress remained constant and the linear-force model correlated with those experimental data which were obtained under the absence of a BUE. The angle λ formed by the shear plane and the direction of the resultant force remained constant for each test condition but varied with cutting speed. Neither the Ernst and Merchant minimum energy, nor the Lee and Shaffer solutions are in agreement with experimental observations.


2013 ◽  
Vol 589-590 ◽  
pp. 122-127 ◽  
Author(s):  
Guang Ming Zheng ◽  
Jun Zhao ◽  
Xin Yu Song ◽  
Xiang Cheng

A 3D finite element model (FEM) of metal cutting was constructed based on the thermal-mechanical coupling theory. The cutting process of Sialon ceramic tools turning Inconel 718 was simulated and experimented. The effect of cutting speed, feed rate and depth of cut on the cutting force was analyzed. According to the correlation characteristics between the data points, the fractal characteristics of cutting forces in the cutting process were also investigated. The results showed that the cutting speed had a great effect on the fractal dimension of cutting force. The simulation results were in good agreement with the experimental findings. It was concluded that the minimum fractal dimension of cutting force was obtained at v=230 m/min under these experiment conditions. The fractal analysis is a simple and powerful tool for quantifying the stability of cutting process. The finding of this research is valuable for future practical implementation.


1966 ◽  
Vol 8 (3) ◽  
pp. 264-275 ◽  
Author(s):  
G. Boothroyd ◽  
J. A. Bailey

A new theoretical analysis of the orthogonal cutting process is described which is based on the known behaviour of a single phase metal at high strains, strain rates and temperatures. The theoretical analysis applies to the case where a continuous chip is produced under non-lubricated conditions with the absence of a built-up edge on the tool face and indicates the important parameters in the cutting process. The theory is examined experimentally and its validity established. Finally, from a knowledge of the effects of strain rate and temperature on the yield stress of a single phase metal, the theory is used to predict the effects of changes in cutting speed and tool rake angle on the tool forces and geometry of the cutting process. These predictions are compared qualitatively with the results of cutting tests.


SINERGI ◽  
2020 ◽  
Vol 24 (3) ◽  
pp. 171
Author(s):  
Sobron Yamin Lubis ◽  
Sofyan Djamil ◽  
Yehezkiel Kurniawan Zebua

In the machining of metal cutting, cutting tools are the main things that must be considered. Using improper cutting parameters can cause damage to the cutting tool. The damage is Built-Up Edge (BUE). The situation is undesirable in the metal cutting process because it can interfere with machining, and the surface roughness value of the workpiece becomes higher. This study aimed to determine the effect of cutting speed on BUE that occurred and the cutting strength caused. Five cutting speed variants are used. Observation of the BUE process is done visually, whereas to determine the size of BUE using a digital microscope. If a cutting tool occurs BUE, then the cutting process is stopped, and measurements are made. This study uses variations in cutting speed consisting of cutting speed 141, 142, 148, 157, 163, and 169 m/min, and depth of cut 0.4 mm. From the results of the study were obtained that the biggest feeding force is at cutting speed 141 m/min at 347 N, and the largest cutting force value is 239 N with the dimension of BUE length: 1.56 mm, width: 1.35 mm, high: 0.56mm.


2012 ◽  
Vol 9 (1) ◽  
pp. 37 ◽  
Author(s):  
LB Abhang ◽  
M Hameedullah

 Due to the widespread use of highly automated machine tools in the metal cutting industry, manufacturing requires highly reliable models and methods for the prediction of output performance in the machining process. The prediction of optimal manufacturing conditions for good surface finish and dimensional accuracy plays a very important role in process planning. In the steel turning process the tool geometry and cutting conditions determine the time and cost of production which ultimately affect the quality of the final product. In the present work, experimental investigations have been conducted to determine the effect of the tool geometry (effective tool nose radius) and metal cutting conditions (cutting speed, feed rate and depth of cut) on surface finish during the turning of EN-31 steel. First and second order mathematical models are developed in terms of machining parameters by using the response surface methodology on the basis of the experimental results. The surface roughness prediction model has been optimized to obtain the surface roughness values by using LINGO solver programs. LINGO is a mathematical modeling language which is used in linear and nonlinear optimization to formulate large problems concisely, solve them, and analyze the solution in engineering sciences, operation research etc. The LINGO solver program is global optimization software. It gives minimum values of surface roughness and their respective optimal conditions. 


2019 ◽  
Vol 889 ◽  
pp. 87-94
Author(s):  
Nguyen Thi Quoc Dung

Metal cutting is one of the most important machining processes in manufacturing industry. Thorough understanding of metal cutting process facilitates the optimization in selection of cutting tools and machining parameters. There are several methods used for studying phenomena in metal cutting process. Using a quick-top device is an efficient technique for investigation cutting process in which cutting action is stopped so suddenly that the “froze” specimen called the chip root honestly depicts what happened during cutting action. Design strategies of a quick-stop are accelerating cutting tool away from the workpiece or decelerating the workpiece remaining in engagement with the tool. Operation of a quick-stop device can be either mechanically or by explosive. Quick-stop devices can be utilized for various types of machining processes such as: turning, milling, drilling. This paper described the analysis, fabrication, and testing of a quick-stop device which is used for researching on chip formation in hard turning. This device has simple and safe operation which utilizes spring forces to retract the tool from workpiece during cutting. The results of performance at cutting speed of 283 m/min show that the separation distance is quite small, less than 0.2mm so that the deformations on the root chip are close to that while actual machining process. This indicates that the device has satisfied the requirements of an equipment for studying on chip formation.


2019 ◽  
Vol 17 (2) ◽  
pp. 237-246 ◽  
Author(s):  
Venkateshwar Reddy Pathapalli ◽  
Veerabhadra Reddy Basam ◽  
Suresh Kumar Gudimetta ◽  
Madhava Reddy Koppula

Purpose Nowadays, the applications of metal matrix composites are tremendously increasing in engineering fields. Consequently, the demand for precise machining of composites has also grown enormously. The purpose of this paper is to reduce production cost and simultaneously improve desired product quality through optimal parameter setting using WASPAS and MOORA. Design/methodology/approach Metal matrix composites were fabricated using stir casting process, with aluminum 6063 as matrix and titanium carbide as reinforcement. Fabricated composite samples were machined on medium duty lathe using cemented carbide tool. All the experiments were carried out based on Box–Behnken design. Comparison of multi objective optimization based on ratio analysis and weighted aggregated sum product assessment in optimizing four parameters, namely, “cutting speed,” “feed rate,” “depth of cut” and “reinforcement weight percent of composite samples”; evaluating their influence on material removal rate, cutting force and surface roughness were carried out. Findings The output achieved by both MOORA and WASPAS are in similar MCDM) techniques in the selection of machining parameters. Practical implications The results obtained in the present paper will be helpful for decision makers in manufacturing industries, who work in metal cutting area, to select the suitable levels for the parameters by implementing the MCDM techniques. Originality/value The novelty of this paper is making an attempt to select better MCDM technique based on the comparison of results obtained for the individual technique.


Author(s):  
Nirmal S. Kalsi ◽  
Rakesh Sehgal ◽  
Vishal S. Sharma

Multi-objective optimization is becoming important day by day due to increase in complexity of the processes and expectations of more reliable solutions. In view of the complexity of the process, controlling the machining parameters without compromising on the response parameters is a tedious process. In the recent approach, researchers have used many combinations of available techniques to solve multi performance characteristic problems depending upon the situation and accuracy desired in the results, to make the results more reliable. In this paper, the authors have pronounced and used a combination of grey relational and Taguchi based analysis to optimize a multi-objective metal cutting process to yield maximum performance of cutting tools in turning. Main cutting force, power consumption, tool wear and material removal rate were evaluated used L18 orthogonal array considering cutting speed, feed rate and depth of cut, using cryogenically treated and untreated tungsten carbide cutting tool inserts.


Sign in / Sign up

Export Citation Format

Share Document