A New Analysis of the Forces in Orthogonal Metal Cutting

1965 ◽  
Vol 87 (4) ◽  
pp. 480-486 ◽  
Author(s):  
J. D. Cumming ◽  
S. Kobayashi ◽  
E. G. Thomsen

The mechanics of orthogonal cutting have been reexamined and for the shear-plane concept of metal cutting, linear and quadratic-force models were suggested. It was shown that for steel SAE-1213, investigated under variable cutting conditions, the dynamic shearing stress remained constant and the linear-force model correlated with those experimental data which were obtained under the absence of a BUE. The angle λ formed by the shear plane and the direction of the resultant force remained constant for each test condition but varied with cutting speed. Neither the Ernst and Merchant minimum energy, nor the Lee and Shaffer solutions are in agreement with experimental observations.

1959 ◽  
Vol 81 (3) ◽  
pp. 263-279 ◽  
Author(s):  
D. M. Eggleston ◽  
R. Herzog ◽  
E. G. Thomsen

Orthogonal-cutting experiments using SAE 1112 free-cutting steel, 2024-T4 and 6061-T6 aluminum alloys, and alpha-brass (85 Cu-15 Zn) at feeds of 0.002 to 0.010 ipr, were performed on a lathe with 18-4-1 high-speed-steel cutting tools. The mean cutting speeds and rake angles for SAE 1112 varied from 33.7 to 170.8 fpm and 5 to 40 deg, respectively, while the remainder of the alloys were tested at conditions yielding a continuous chip without a built-up edge at speeds ranging from approximately 470 to 790 fpm. It was found that the angle λ between the shear plane and the resultant tool force R was only approximately constant for each test condition and varied with cutting speed. Hence the equation λ = ϕ + β − α = const and the linear relationship between ϕ and β − α are only approximately satisfied. Furthermore, neither the Ernst and Merchant minimum-energy criterion, nor the Lee and Shaffer nor the Hill ideal plastic-solid solution, is in agreement with all the experimental observations.


2016 ◽  
Vol 36 (1) ◽  
pp. 96-109
Author(s):  
MK Onifade ◽  
AC Igboanugo ◽  
JO Osarenmwinda

The purpose of this research was to develop models for the prediction of responses from orthogonal metal cutting process that are responsible for the machinability ratings of this technological system. Mild steel work-piece material that is representative sample for various industrial applications was machined. The various industrial applications of this representative sample range from mechanical shafts to fasteners, screws and hydraulic jack. These machine elements require high degree of surface finish. A fifteen-run based Box-Behnken response surface design was created using widely established machining parameters, namely cutting speed, feed rate and depth of cut. The optimum predicted responses from the orthogonal cutting process for the optimal process parameters are 0.1742 micron, 0.4933 micron, 0.1845 micron, 0.3673 micron, 794.6839 seconds and 19.642 seconds for the Ra, Rz, Rq, Rt, TL and M/C time respectively. The associated desirabilities for these optimum responses are 1.000000, 1.000000, 1.000000, 1.000000, 0.524122, and 0.361858 respectively.   http://dx.doi.org/10.4314/njt.v36i1.13


1989 ◽  
Vol 111 (2) ◽  
pp. 210-219 ◽  
Author(s):  
D. A. Stephensen

Widely applicable machining simulation programs require reliable cutting force estimates, which currently can be obtained only from process-dependent machinability databases. The greatest obstacle to developing a more basic, efficient approach is a lack of understanding of material yield and frictional behavior under the unique deformation and frictional conditions of cutting. This paper describes a systematic method of specifying yield stress and friction properties needed as inputs to process-independent cutting force models. Statistically designed end turning tests are used to generate cutting force and chip thickness data for a mild steel and an aluminum alloy over a wide range of cutting conditions. Empirical models are fit for the cutting force and model-independent material parameters such as the tool-chip friction coefficient and shear stress on the shear plane. Common material yield behavior assumptions are examined in light of correlations between these parameters. Results show no physically meaningful correlation between geometric shear stress and strain measures, a weak correlation between geometric stress and strain rate measures, and a strong correlation between material properties and input variables such as cutting speed and rake angle. An upper bound model is used to fit four- and five-parameter polynomial strain-rate sensitive constitutive equations to the data. Drilling torques calculated using this model and an empirical turning force model agree reasonably well with measured values for the same material combination, indicating that end turning test results can be used to estimate mean loads in a more complicated process.


1959 ◽  
Vol 81 (3) ◽  
pp. 251-262 ◽  
Author(s):  
S. Kobayashi ◽  
E. G. Thomsen

It was found that shearing forces on the shear plane were linear functions of the area on which they acted. This was observed for all materials investigated; for SAE 1112 steel, 2024-T4, and 6061-T6 aluminum alloys, and alpha-brass, and also is in agreement with data taken from the literature. Furthermore, all data examined showed that the straight line of shear force Fs versus area As intercepted the ordinate at a positive force value. This was interpreted to mean that the intercept part of the shearing force was used up in overcoming workpiece deformation or friction at the flank of the tool and was not available for chip deformation. Accepting this concept, it can then be shown that the average shearing stress on the shear plane for SAE 1112 is constant and is independent of normal stress, cutting speed, or strain rate, extent of deformation or finite strain, and extent of prior deformation. The shearing stresses for the other materials tested or examined were also constant for the limited range of variables available. In contrast to the shearing stress, the normal stress on the shear plane was not constant and appears to be a yet unknown function of the mechanism of friction on the tool face. The shearing stresses calculated from the metal-cutting data showed good correlation with flow stresses at the same finite strains which were obtained from static compression tests. The reason for the uniqueness of the finite strains at which correlation is achieved is not as yet clear.


2011 ◽  
Vol 275 ◽  
pp. 204-207 ◽  
Author(s):  
Lenka Fusova ◽  
Pawel Rokicki ◽  
Zdeněk Spotz ◽  
Karel Saksl ◽  
Carsten Siemers

Nickel-base superalloys like Alloy 625 are widely used in power generation applications due to their unique properties especially at elevated temperatures. During the related component manufacturing for gas turbines up to 50% of the material has to be removed by metal cutting operations like milling, turning or drilling. As a result of high strength and toughness the machinability of Alloy 625 is generally poor and only low cutting speeds can be used. High-speed cutting of Alloy 625 on the other hand gets more important in industry to reduce manufacturing times and thus production costs. The cutting speed represents one of the most important factors that have influences on the tool life. The aim of this study is the analyses of wear mechanisms occurring during machining of Alloy 625. Orthogonal cutting experiments have been performed and different process parameters have been varied in a wide range. New and worn tools have been investigated by stereo microscopy, optical microscopy and scanning electron microscopy. Energy-dispersive X-ray analyses were used for the investigation of chemical compositions of the tool's surface as well as the nature of reaction products formed during the cutting process. Wear mechanisms observed in the machining experiments included abrasion, fracture and tribochemical effects. Specific wear features appeared depending on the mechanical and thermal conditions generated in the wear zones.


Author(s):  
Felicia Stan ◽  
Daniel Vlad ◽  
Catalin Fetecau

This paper presents an experimental investigation of the cutting forces response during the orthogonal cutting of polytetrafluoroethylene (PTFE) and PTFE-based composites using the Taguchi method. Cutting experiments were conducted using the L27 orthogonal array and the effects of the cutting parameters (feed rate, cutting speed and rake angle) on the cutting force were analyzed using the S/N ratio response and the analysis of variance (ANOVA). Statistical models that correlate the cutting force with process variables were developed using ANOVA and polynomial regression. The variation of the apparent friction coefficient was analyzed with respect to tool geometry and the cutting process. The results indicated that cutting and thrust forces increase with increasing feed rate, and decrease with increasing rake angles from negative to positive values and increasing cutting speed. A power law relationship between the apparent friction coefficient and the normal force exerted by the chip on the tool-rake face was identified, the former decreasing with an increasing normal force.


2012 ◽  
Vol 557-559 ◽  
pp. 1364-1368
Author(s):  
Yong Feng ◽  
Mu Lan Wang ◽  
Bao Sheng Wang ◽  
Jun Ming Hou

High-speed metal cutting processes can cause extremely rapid heating of the work material. Temperature on the machined surface is critical for surface integrity and the performance of a precision component. However, the temperature of a machined surface is challenging for in-situ measurement.So, the finite element(FE) method used to analyze the unique nonlinear problems during cutting process. In terms of heat-force coupled problem, the thermo-plastic FE model was proposed to predict the cutting temperature distribution using separated iterative method. Several key techniques such as material constitutive relations, tool-chip interface friction and separation and damage fracture criterion were modeled. Based on the updated Lagrange and arbitrary Lagrangian-Eulerian (ALE) method, the temperature field in high speed orthogonal cutting of carbon steel AISI-1045 were simulated. The simulated results showed good agreement with the experimental results, which validated the precision of the process simulation method. Meanwhile, the influence of the process variables such as cutting speed, cutting depth, etc. on the temperature distribution was investigated.


2011 ◽  
Vol 117-119 ◽  
pp. 1788-1791
Author(s):  
Yue Feng Yuan ◽  
Wu Yi Chen

It is necessary for cutting simulation to determine the friction model at the tool-chip interface suitable for metal cutting process. Cutting force experiments in orthogonal turning titanium alloy TI6AL4V are carried out with cement carbide tool KW10. The Coulomb frictions at the tool-chip interface are calculated based on measured cutting force, and the friction model is regressed, where cutting speed and feed rate are presented.


1963 ◽  
Vol 85 (1) ◽  
pp. 49-64 ◽  
Author(s):  
W. N. Findley ◽  
R. M. Reed

A study is presented of the effect of wide variations in speed of cutting and rake angle on orthogonal cutting of several metals—mainly a lead-antimony alloy. It was observed that enormous decreases in tool forces occurred in the lead-antimony with increase in speed from 6 to 3800 fpm, and decrease in rake angle from +30° to −60°. Explanations for these variations are proposed. An unusual observation was that a transition as speed increased from continuous to discontinuous chips occurred at large negative rake angles. Possible causes of this behavior are discussed. Another unusual observation was that a steep rise in tool force occurred with increase in speed for rake angles of 0° and +30°. The rise to a peak value was followed by an equally steep decrease in tool forces. Other observations discussed include the appearance of side spikes on the chips, chip curl, lateral extrusion of chips, influence of normal stress occurring on the shear plane, and the apparent coefficient of friction.


1961 ◽  
Vol 83 (4) ◽  
pp. 557-568 ◽  
Author(s):  
P. Albrecht

Introduction of the concept of ploughing into the metal-cutting process lead to the abandoning of the assumption of collinearity of the resultant force on tool face and on the shear plane. With this understanding the tool face force is found to produce a bending effect causing bending stresses in the shear zone. Study of the chip formation mechanism when varying cutting speed showed that increased bending action reduces the shear angle and vice versa. A set-up for the development of an analytical model of the chip formation process based on the combined effect of shear and bending stresses in the shear zone has been given. Application of the gained insight to the design of the cutting tool for maximum tool life by controlling of the chip-tool contact was suggested. Brief introduction to the study of cyclic events in chip formation and their relation to the tool life is presented.


Sign in / Sign up

Export Citation Format

Share Document