scholarly journals Methane production in different breeds, grazing different pastures or fed a total mixed ration, as measured by a Laser Methane Detector

2015 ◽  
Vol 44 (5) ◽  
pp. 12-16
Author(s):  
SM Grobler ◽  
MM Scholtz ◽  
H Van Rooyan ◽  
M Mpayipheli ◽  
FWC Neser

Agriculture is responsible for 5% to 10% of the global anthropogenic greenhouse gas (GHG) emissions. Livestock contribute about 65% of agricultural GHG and enteric fermentation accounts for 90% of this. The global warming potential of CH4 is known to be 23 times more than that of carbon dioxide, resulting in it being a significant role player in the greenhouse gas family. The laser methane detector (LMD) is an instrument that has the potential to measure enteric CH4 emission from livestock under normal husbandry activities. This study was aimed at evaluating the efficiency and results, when using the LMD to measure CH4 production under normal production conditions. Twelve heifers, four each from the Bonsmara, Nguni and Jersey breeds, were subjected to grazing natural veld, forage sorghum under irrigation, oats pasture under irrigation or a total mixed ration. Measurements were taken late afternoon (18:00) when the animals were ruminating. Four repeated measurements, lasting 60 seconds each, were taken on 10 consecutive days on each of the production systems. The animals were adapted for a period of 14 days on the specific feed, before the measurements were taken. The Jersey heifers produced significantly less CH4 than the Bonsmara and Nguni on natural veld, with no significant differences between breeds on the forage sorghum. On natural veld the heifers generated 48% more CH4. These results thus indicate that the LMD produce sensible and repeatable measurements that can be interpreted in respect of CH4 production by cattle. The next step will be to increase the number of breeds, numbers per breed, and feeding strategies over all seasons in order to validate and build up a baseline data set on the use of the LMD to measure CH4 emissions from cattle under different grazing conditions.Keywords: Heifers, methane emission, pastures, total mixed ration

2017 ◽  
Vol 6 (2) ◽  
pp. 66 ◽  
Author(s):  
Maria Storrle ◽  
Hans-Jorg Brauckmann ◽  
Gabriele Broll

This study investigates the amounts of greenhouse gas (GHG) emissions due to manure handling within different livestock production systems in Tyumen oblast of Western Siberia. Tyumen oblast occupies approx. 160 000 km² of Asian taiga and forest steppe. The amount of GHGs from manure was calculated as a function of the handling according to current IPCC guidelines for ecozones and livestock production systems. The entire Tyumen oblast has annual 7 400 t methane emissions and 440 t nitrous oxide emissions from manure. Three livestock production systems are prevalent in Tyumen oblast: Mega farms, small farms and peasant farms. The share of mega farms is 81 % (171 kt CO2 eq). Additionally, the slurry system in mega farms causes environmental pollution. GHG emissions and environmental pollution could be reduced by implementing solid manure systems or pasturing, by installing storage facilities for slurry outside the stables and through application of the manure as fertiliser at mega farms. In small farms solid manure systems and a small stocking density of livestock lead to smallest GHG emissions (1 %, 3 kt CO2 eq) from manure. In peasant farming 18 % (38 kt CO2 eq) of GHGs are emitted due to pasturing. 


2004 ◽  
Vol 84 (3) ◽  
pp. 445-453 ◽  
Author(s):  
D. A. Boadi ◽  
K. M. Wittenberg ◽  
S. L. Scott ◽  
D. Burton ◽  
K. Buckley ◽  
...  

The objectives of this study were to assess enteric methane (CH4) production by beef steers fed one of two isocaloric diets with different forage:grain ratios and to quantify greenhouse gas (GHG) emissions from bedded manure packs in the eight feedlot pens holding these steers (14 head pen-1). Five animals (252 ± 20 kg) in each pen were randomly selected for measurement of CH4 emissions over the course of the 126-d feeding trial. Two 24-h gas collections were completed for each steer in each of three collection periods using the sulfur hexafluoride tracer gas technique. The fluxes of nitrous oxide (N2O), methane (CH4) and carbon dioxide (CO2) from bedding packs were measured using vented static chambers in each sampling period. Methane production (L d-1) was 42% higher (P < 0.05) from steers fed the low forage:grain ratio than from steers fed the high forage:grain ratio. Overall, methane production (% of gross energy intake) ranged from 0.9 to 6.9% on the low forage:grain diet and from 0.7 to 4.9% on the high forage:grain diet. Daily CH4 emissions were similar in the first two periods and increased during the third sampling period. There was no effect of diet on manure pack temperature during sampling, however, the manure pack was deeper (P < 0.05) in pens holding animals fed the high forage:grain diet. Furthermore, diet had no effect on the manure pack fluxes. Total daily non-CO2 emissions from enteric and manure pack sources (CO2 equivalent) were different (P < 0.05) between dietary treatments and averaged 1931 ± 81 g head-1 d-1 for the low forage:grain and 1394 ± 81 g head-1 d-1 for the high forage:grain diet. Key words: Feedlot steers, greenhouse gases, enteric fermentation, manure packs


2021 ◽  
Author(s):  
Elsbe von der Lancken ◽  
Victoria Nasser ◽  
Katharina Hey ◽  
Stefan Siebert ◽  
Ana Meijide

&lt;p&gt;The need to sustain global food demand while mitigating greenhouse gases (GHG) emissions is a challenge for agricultural production systems. Since the reduction of GHGs has never been a breeding target, it is still unclear to which extend different crop varieties will affect GHG emissions. The objective of this study was to evaluate the impact of N-fertilization and of the use of growth regulators applied to three historical and three modern varieties of winter wheat on the emissions of the three most important anthropogenic GHGs, i.e. carbon dioxide (CO&lt;sub&gt;2&lt;/sub&gt;), methane (CH&lt;sub&gt;4&lt;/sub&gt;) and nitrous oxide (N&lt;sub&gt;2&lt;/sub&gt;O). Furthermore, we aimed at identifying which combination of cultivars and management practises could mitigate GHG emissions in agricultural systems without compromising the yield. GHG measurements were performed using the closed chamber method in a field experiment located in G&amp;#246;ttingen (Germany) evaluating three historical and three modern winter wheat varieties, with or without growth regulators under two fertilization levels (120 and 240&amp;#160;kg nitrogen ha&lt;sup&gt;-1&lt;/sup&gt;). GHG measurements were carried out for 2 weeks following the third nitrogen fertilizer application (where one third of the total nitrogen was applied), together with studies on the evolution of mineral nitrogen and dissolved organic carbon in the soil. Modern varieties showed significantly higher CO&lt;sub&gt;2&lt;/sub&gt; emissions (i.e. soil and plant respiration; +23&amp;#160;%) than historical varieties. The soils were found to be a sink for CH&lt;sub&gt;4,&lt;/sub&gt; but CH&lt;sub&gt;4&lt;/sub&gt; fluxes were not affected by the different treatments. N&lt;sub&gt;2&lt;/sub&gt;O emissions were not significantly influenced by the variety age or by the growth regulators, and emissions increased with increasing fertilization level. The global warming potential (GWP) for the modern varieties was 7284.0 &amp;#177; 266.9&amp;#160;kg CO&lt;sub&gt;2-eq&lt;/sub&gt; ha&lt;sup&gt;-1&lt;/sup&gt;. Even though the GWP was lower for the historic varieties (5939.5 &amp;#177; 238.2&amp;#160;kg CO&lt;sub&gt;2&lt;/sub&gt;-&lt;sub&gt;eq&lt;/sub&gt; ha&lt;sup&gt;-1&lt;/sup&gt;), their greenhouse gas intensity (GHGI), which relates GHG and crop yield, was larger (1.5 &amp;#177; 0.3&amp;#160;g CO&lt;sub&gt;2&lt;/sub&gt;-&lt;sub&gt;eq&lt;/sub&gt; g&lt;sup&gt;-1&lt;/sup&gt; grain), compared to the GHGI of modern varieties (0.9 &amp;#177; 0.0&amp;#160;g CO&lt;sub&gt;2&lt;/sub&gt;-&lt;sub&gt;eq&lt;/sub&gt; g&lt;sup&gt;-1&lt;/sup&gt; grain), due to the much lower grain yield in the historic varieties. Our results suggest that in order to mitigate GHG emissions without compromising the grain yield, the best management practise is to use modern high yielding varieties with growth regulators and a fertilization scheme according to the demand of the crop.&lt;/p&gt;


2009 ◽  
Vol 55 (No. 8) ◽  
pp. 311-319 ◽  
Author(s):  
Z. Exnerová ◽  
E. Cienciala

As a part of its obligations under the Climate Convention, the Czech Republic must annually estimate and report its anthropogenic emissions of greenhouse gases. This also applies for the sector of agriculture, which is one of the greatest producers of methane and nitrous oxide emissions. This paper presents the approaches applied to estimate emissions in agricultural sector during the period 1990–2006. It describes the origin and sources of emissions, applied methodology, parameters and emission estimates for the sector of agriculture in the country. The total greenhouse gas emissions reached 7644 Gg CO<sub>2</sub> eq. in 2006. About 59% (4479 Gg CO<sub>2</sub> eq.) of these emissions has originated from agricultural soils. This quantity ranks agriculture as the third largest sector in the Czech Republic representing 5.3% of the total greenhouse gas emissions (GHG). The emissions under the Czech conditions consist mainly of emissions from enteric fermentation, manure management and agricultural soils. During the period 1990–2006, GHG emissions from agriculture decreased by 50%, which was linked to reduced cattle population and amount of applied fertilizers. The study concludes that the GHG emissions in the sector of agriculture remain significant and their proper assessment is required for sound climate change adaptation and mitigation policies.


Animals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2083
Author(s):  
Ridha Ibidhi ◽  
Sergio Calsamiglia

Greenhouse gas emissions and the carbon footprint (CF) were estimated in twelve Spanish dairy farms selected from three regions (Mediterranean, MED; Cantabric, CAN; and Central, CEN) using a partial life cycle assessment through the Integrated Farm System Model (IFSM). The functional unit was 1 kg of energy corrected milk (ECM). Methane emissions accounted for the largest contribution to the total greenhouse gas (GHG) emissions. The average CF (kg CO2-eq/kg of ECM) was 0.84, being the highest in MED (0.98), intermediate in CEN (0.84), and the lowest in CAN (0.67). Two extreme farms were selected for further simulations: one with the highest non-enteric methane (MED1), and another with the highest enteric methane (CAN2). Changes in management scenarios (increase milk production, change manure collection systems, change manure-type storage method, change bedding type and installation of an anaerobic digester) in MED1 were evaluated with the IFSM model. Changes in feeding strategies (reduce the forage: concentrate ratio, improve forage quality, use of ionophores) in CAN2 were evaluated with the Cornell Net Carbohydrate and Protein System model. Results indicate that changes in management (up to 27.5% reduction) were more efficient than changes in dietary practices (up to 3.5% reduction) in reducing the carbon footprint.


2017 ◽  
Vol 39 (3) ◽  
pp. 315-331 ◽  
Author(s):  
David Hsu ◽  
Ting Meng ◽  
Albert Han ◽  
Daniel Suh

Buildings and energy systems are shaped within many different kinds of departments and agencies throughout local governments. This article argues that further opportunities exist to reduce the energy use of buildings and their associated greenhouse gas (GHG) emissions through the existing powers and jurisdiction of local governments. We use the example of New York City, where buildings produced 73 percent of all GHG emissions in 2014. By analyzing a data set of almost four thousand large buildings, we identify new opportunities for planners and other professionals to reduce energy use and GHG emissions by focusing on different mechanisms and/or collaborations.


2018 ◽  
Vol 58 (6) ◽  
pp. 980 ◽  
Author(s):  
Richard Rawnsley ◽  
Robyn A. Dynes ◽  
Karen M. Christie ◽  
Matthew Tom Harrison ◽  
Natalie A. Doran-Browne ◽  
...  

Recognition is increasingly given to the need of improving agricultural production and efficiency to meet growing global food demand, while minimising environmental impacts. Livestock forms an important component of global food production and is a significant contributor to anthropogenic greenhouse-gas (GHG) emissions. As such, livestock production systems (LPS) are coming under increasing pressure to lower their emissions. In developed countries, LPS have been gradually reducing their emissions per unit of product (emissions intensity; EI) over time through improvements in production efficiency. However, the global challenge of reducing net emissions (NE) from livestock requires that the rate of decline in EI surpasses the productivity increases required to satisfy global food demand. Mechanistic and dynamic whole farm-system models can be used to estimate farm-gate GHG emissions and to quantify the likely changes in farm NE, EI, farm productivity and farm profitability as a result of applying various mitigation strategies. Such models are also used to understand the complex interactions at the farm-system level and to account for how component mitigation strategies perform within the complexity of these interactions, which is often overlooked when GHG mitigation research is performed only at the component level. The results of such analyses can be used in extension activities and to encourage adoption, increase awareness and in assisting policy makers. The present paper reviews how whole farm-system modelling has been used to assess GHG mitigation strategies, and the importance of understanding metrics and allocation approaches when assessing GHG emissions from LPS.


2021 ◽  
Vol 33 (2) ◽  
pp. 1
Author(s):  
M. Jordana Rivero ◽  
Nicolas Lopez-Villalobos ◽  
Alex Evans ◽  
Alexandre Berndt ◽  
Andrew Cartmill ◽  
...  

Ruminant livestock are raised under diverse cultural and environmental production systems around the globe. Ruminant livestock can play a critical role in food security by supplying high-quality, nutrient-dense food with little or no competition for arable land while simultaneously improving soil health through vital returns of organic matter. However, in the context of climate change and limited land resources, the role of ruminant-based systems is uncertain because of their reputed low efficiency of feed conversion (kilogram of feed required per kilogram of product) and the production of methane as a by-product of enteric fermentation. A growing human population will demand more animal protein, which will put greater pressure on the Earth’s planetary boundaries and contribute further to climate change. Therefore, livestock production globally faces the dual challenges of mitigating emissions and adapting to a changing climate. This requires research-led animal and plant breeding and feeding strategies to optimise ruminant systems. This study collated information from a global network of research farms reflecting a variety of ruminant production systems in diverse regions of the globe. Using this information, key changes in the genetic and nutritional approaches relevant to each system were drawn that, if implemented, would help shape more sustainable future ruminant livestock systems.


2017 ◽  
Vol 33 (5) ◽  
pp. 393-405 ◽  
Author(s):  
Libby O. Christensen ◽  
Ryan E. Galt ◽  
Alissa Kendall

AbstractMany consumers are trying to reduce their food's environmental impact by purchasing more locally sourced food. One choice for local food is Community Supported Agriculture (CSA), in which farmers provide a share of produce on a regular basis to pre-paying farm members. The number of CSAs in the USA has grown from two in the mid-1980s to perhaps as many as 12,617 according to the latest US census of agriculture (2014). We use a case study approach to investigate the greenhouse gas (GHG) emissions associated with five CSA operations in the Sacramento Valley of California. By understanding the GHG emissions of CSAs and the practices that might be improved, we hope to support innovative strategies to reduce GHG emissions in these agricultural production systems. Input, production and distribution data were collected from each farm and reported in CO2e emissions for 1 kg CSA produce at the pickup location. Results show large variation in total emissions, ranging from 1.72 to 6.69 kg CO2e kg−1 of produce with an average of 3.94 kg CO2e kg−1 produce. The largest source of emissions was electricity, contributing over 70% of total CO2e emissions on average. Based on our findings, despite the seemingly similarities between these operations in terms of production site, acreage, customers and production practices, there is still a large amount of variability with regard to total GHG. Thus we argue coming up with a standardized production function for diversified production and deriving GHGs or calculating average total emissions overlooks the heterogeneity of the system. Food systems can never be reduced to a simple binary of local is better and conventional is worse, or its inverse local is worse and conventional is better, because of the complexities of the production and distribution systems and their relationship to GHG emissions. Yet, we can say that localized production systems that are low in electricity use (or use renewable energy sources) and use efficiently-produced compost use have lower GHG emissions than those that do not.


Sign in / Sign up

Export Citation Format

Share Document