Solar Energy on the Dairy Farm

1979 ◽  
Vol 42 (7) ◽  
pp. 604-605
Author(s):  
HARLIN A. FIENE

Dairymen now have an alternative source of energy to assist them in efficient production of milk. Solar energy is being used to heat water and to space-heat milk houses and milking parlors. Used in conjunction with standard heating systems, solar systems can supply from 30 to 70% of the water- and space-heating requirements on a dairy farm. Tax incentives and rising costs of electricity and fossil fuels are making solar energy systems economically feasible for the modern dairyman. During the 1970s the world has come to recognize the reserves of fossil fuels used for energy are limited. The “energy crisis” caused these sources of energy to spiral in cost. Today, alternate sources of energy are being investigated and some are proving to be economically feasible.

Author(s):  
Hamad Alwashmi ◽  
Jay F. Kunze

In many parts of the world, drinking water is not available except through desalination. Most of these areas have an abundance of solar energy, with few cloudy periods. Energy is required for desalination and for producing electricity. Traditionally this energy has been supplied by fossil fuels. However, even in those parts of the world that have abundant fossil fuels, using them for these purposes is being discouraged for two reasons: 1) the emission of greenhouse gases from combustion of fossil fuels, and 2) the higher value of fossil fuels when used for transportation. Nuclear power and solar power are both proposed as replacements for fossil fuels in these locations. Both of these energy systems have high capital costs, and negligible fuel costs (zero for solar) Instead of these two primary forms of energy competing, this paper shows how they can compliment each other, especially where a significant part of the electricity demand is used for desalination.


2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Huang Huanhai

The potential crisis of energy and the deterioration of ecological environment make the world's cumbersomedevelopment of renewable energy including new energy, including solar energy. Traditional energy in the coal, oil andnatural gas are evolved from ancient fossils, it is collectively referred to as fossil fuels. As the world's energy needscontinue to increase, fossil fuels will also be depleted, it is necessary to fi nd a new energy to replace the traditionalenergy. Solar energy is a clean renewable energy with mineral energy incomparable superiority. Modern society shouldbe a conservation-oriented society, and social life should also be a life-saving energy. At the same time, Premier WenJiabao also proposed on June 30, 2005 and stressed the need to speed up the construction of a conservation-orientedsociety. And solar energy as an inexhaustible new environmentally friendly energy has become the world's energyresearch work in the world an important issue. Is the world in the economic situation to take a simpler, economical,environmentally friendly and reliable building heating and heating energy-saving measures. This paper summarizes thecurrent global energy status, indicating the importance of solar power and prospects. Details of the various solar powergeneration methods and their advantages, and made a comparison of this power generation parameters. At the sametime pointed out that the diffi culties faced by solar power and solutions, as well as China's solar power of the favorableconditions and diffi culties. The future of China's solar energy made a prospect.


2017 ◽  
Vol 21 (2) ◽  
pp. 15-24 ◽  
Author(s):  
Jan Barwicki ◽  
Maciej Kuboń ◽  
Andrzej Marczuk

AbstractPhotovoltaic systems are very efficient concerning proper utilization of solar radiation. However, the nanotechnology solution can replace the photovoltaic by the use of new production technology to lower the price of solar cells to one tenth. Sun provides nearly unlimited energy resource, but existing solar energy harvesting technologies are quite expensive and cannot compete with fossil fuels. The central part of Poland, which represents about 50 percent of the area, gives solar radiation at the level of 1000 kWh·m−2/year. Other new developments, which can help improve existing efficiency of solar systems are: diatoms utilization, artificial photosynthesis, nanoleaves and rotation solar towers.


2014 ◽  
Vol 899 ◽  
pp. 199-204
Author(s):  
Lukáš Skalík ◽  
Otília Lulkovičová

The energy demand of buildings represents in the balance of heat use and heat consumption of energy complex in the Slovak national economy second largest savings potential. Their complex energy demands is the sum of total investment input to ensure thermal protection and annual operational demands of particular energy systems during their lifetime in building. The application of energy systems based on thermal solar systems reduces energy consumption and operating costs of building for support heating and domestic hot water as well as savings of non-renewable fossil fuels. Correctly designed solar energy system depends on many characteristics, i. e. appropriate solar collector area and tank volume, collector tilt and orientation as well as quality of used components. The evaluation of thermal solar system components by calculation software shows how can be the original thermal solar system improved by means of performance. The system performance can be improved of more than 31 % than in given system by changing four thermal solar system parameters such as heat loss coefficient and aperture area of used solar collector, storage tank volume and its height and diameter ratio.


2018 ◽  
Vol 23 (2) ◽  
pp. 384
Author(s):  
Denise Lucena Cavalcante ◽  
Mônica Rocha Victor De Oliveira

In 2013, the U.S. filed a complaint against India before the World Trade Organization, alleging the inconsistency of certain measures for India relating to domestic requirements under the Jawaharlal Nehru National Solar Mission (“NSM”) for solar cells and solar modules with the rules of the GATT, the SCM and the TRIMS (WTO/DS456).


Author(s):  
Ramzi Alahmadi ◽  
◽  
Kamel Almutairi ◽  

With the increasing global concerns about greenhouse gas emissions caused by the extensive use of fossil fuels, many countries are investing in the deployment of clean energy sources. The utilization of abundant solar energy is one of the fastest growing deployed renewable sources due its technological maturity and economic competitivity. In addition to report from the National Renewable Energy Laboratory (NREL), many studies have suggested that the maturity of solar energy systems will continue to develop, which will increase their economic viability. The focus of analysis in this paper is countries with hot desert climates since they are the best candidates for solar energy systems. The capital of Saudi Arabia, Riyadh is used as the case study due to the country’s ambitious goals in this field. The main purpose of this study is to comprehensively analyze the stochastic behavior and probabilistic distribution of solar irradiance in order to accurately estimate the expected power output of solar systems. A solar Photovoltaic (PV) module is used for the analysis due to its practicality and widespread use in utility-scale projects. In addition to the use of a break-even analysis to estimate the economic viability of solar PV systems in hot desert climates, this paper estimates the indifference point at which the economic feasibility of solar PV systems is justified, compared with the fossil-based systems. The numerical results show that the break-even point of installing one KW generation capacity of a solar PV system is estimated to pay off after producing 16,827 KWh, compared to 15,422 KWh for the case of fossil-based systems. However, the increased cost of initial investment in solar PV systems deployment starts to be economically justified after producing 41,437 KWh.


2019 ◽  
Vol 10 (2) ◽  
Author(s):  
Ivana Radonjić ◽  
Tomislav Pavlović ◽  
Dragoljub Mirjanić ◽  
Darko Divnić

This paper deals with the influence of solar modules soiling on their energy efficiency. Soiling is the term used to describe the deposition of dust on solar modules. Dust, most often contains organic minerals and particles which result from the burning of fossil fuels, etc. In research studies investigating the influence of dust on the solar modules efficiency in the world, in the Solar Energy Laboratory at the Faculty of Sciences and Mathematics in Nis, and in the Solar Energy Laboratory at the Academy of Sciences and Arts of the Republic of Srpska, it was concluded that all types of dust negatively affect the energy efficiency of solar modules, with ash, limestone (calcium carbonate), red soil and sand (silicon dioxide) having the greatest impact.


Author(s):  
Zainab I. AL-Assadi ◽  
Fawzia Irhayyim AL-Assadi

The design of zero-energy buildings can be depending on the effective integration of solar energy systems with building envelopes, where these systems save heat and electricity as well as enhance the aesthetic aspect of the facades. In this paper, the aspects related to the effective integration of buildings with solar energy systems (solar cells and collectors) will be discussed, as well as enhancing the aesthetic aspect of the facades, and since solar energy systems are visible to everyone, their design must adapt to the building structure and the surrounding environment. Solar energy system designers, architects, physicists and other contributors to building energy envelopes must consider the comprehensive concept of it, where buildings are part of the human and social environment and in close relationship with the natural environment, through the use of thin films technology through the design of multi-layers colored optical coatings covering solar panels for building facades. Accordingly, the energy sector should be seen as an area of aesthetic creativity. Two dielectric materials were used, the first is ThF4 with a high refractive index (1.5143) and the second is LiF with a low refractive index (1.393) and for several odd layers, starting from 3 layers and up to 21 layers and for a thicknesses of a quarter wavelength. The design Air/L/H/Glass was applied by the Mat Lab program for the seven colors of the spectrum, So, the aim of this research is determined in designing colored optical coatings for solar systems that enhance the aesthetic aspect of building facades, as well as generating thermal and electrical energy needed to operate the buildings and to find out which color has the best visible reflectivity and solar transmittance better than the rest of the spectrum, all the results exhibit that yellow color has the higher visible reflectivity and higher merit factor, so it is consider the most efficient color for coloring the solar systems than the rest of colors spectrum.


1969 ◽  
Vol 69 (1) ◽  
pp. 45-55
Author(s):  
Y. Shahabasi

Strictly speaking, all forms of energy are derived from the sun. However, our most common forms of energy, fossil-fuels, received their solar input eons ago and have changed their characteristics so that they are now in concentrated form. It is apparent that these stored concentrated energy forms are now being used at such a rapid rate that they will be depleted in the not-toodistant future. It would be useful to utilize the incoming solar energy directly. The effective use of the sun's energy in agriculture by any economically possible means will help the farmers continue their work with no disruption because of the lack of concentrated form of energy. The fluidyne heat engine utilizes solar energy to pump water. The simplicity, reliability, and low cost of this engine are of primary importance for the farmers in the part of the world whereas solar energy is abundant such as Puerto Rico.


Author(s):  
Kamalu Abdullahi Alhassan ◽  
Badamasi Tijjani Abdullahi ◽  
M. Manjur Shah

Challenges related to energy shortages are increasingly frequent both at the local and global scale due to population growth and the desire for a greater standard of living. The growing demand for oil and natural gas caused by high consumption levels is one of the current major problems faced by the world population. Therefore, new forms of energy generation must be investigated that would eventually allow the diversification of the present energy matrix, which has an almost 90% dependence on fossil fuels the world over. This coupled with long-term economic and environmental concerns have resulted in a great amount of research in the past decades on renewable sources of liquid fuels to replace fossil fuels. Burning fossil fuels such as coal and oil releases carbon dioxide (CO2), which is a major cause of global warming. It is anticipated that not a single source of alternative energy but a mix of various energy sources and carriers will contribute to the energy system of the future. Among the various sources been explored, biogas offer one of the best alternative options as they present a viable option for improving sustainable development through energy security and reducing the emission of greenhouse gases. This paper elaborates on Biogas production as the alternative source of fuel. The paper also studies the importance of Biogas production as a means of reducing problem of power energy, environmental vandalism, loss of resources, climate change and also reduce environmental pollution caused by burning of woods, cars, motorcycle and industrial activities.


Sign in / Sign up

Export Citation Format

Share Document