Antimicrobial Resistance of Food-Related Salmonella Isolates, 1999–2000

2002 ◽  
Vol 65 (4) ◽  
pp. 603-608 ◽  
Author(s):  
CONNIE R. KIESSLING ◽  
JEFFREY H. CUTTING ◽  
MERCEDES LOFTIS ◽  
WILLIAM M. KIESSLING ◽  
ATIN R. DATTA ◽  
...  

Salmonellosis is a major foodborne infection in the United States, and strains of Salmonella that are resistant to a variety of antimicrobial agents have become a major public health concern. To estimate the incidence of antimicrobial-resistant Salmonella in our food supply, the U.S. Food and Drug Administration (FDA) has initiated screening of foodborne isolates for sensitivity to antimicrobial agents, including several antibiotics. Salmonella cultures (n = 502) isolated by FDA laboratories during fiscal year 2000 (1 October 1999 through 30 September 2000) from domestic and imported food products and related samples were tested for susceptibility to each of 12 antimicrobial agents using a disc diffusion assay. Because all isolates were resistant to rifampin (5 or 25 μg), only results with the remaining 11 antimicrobial agents are discussed in this paper. Of the 502 isolates, 247 (49.2%) were resistant to one or more antimicrobial agents, and of these 247 isolates, 170 (68.8%) were resistant to one antimicrobial agent, 33 (13.4%) to two antimicrobial agents, 25 (10.1%) to three antimicrobial agents, 7 (2.8%) to four antimicrobial agents, 8 (3.2%) to five antimicrobial agents, and 2 (0.8%) each to six and seven antimicrobial agents. No isolates were resistant to norfloxacin, whereas only seven were resistant to sulfamethoxazole/trimethoprim, six to trimethoprim, three to gentamicin, and one to ciprofloxacin. These results, for the first time, provide a baseline of data on the incidence of antimicrobial-resistant Salmonella in the U.S. food supply, which should be useful in determining the evolution of antimicrobial resistance in the future.

2016 ◽  
Vol 79 (8) ◽  
pp. 1348-1354 ◽  
Author(s):  
DONGRYEOUL BAE ◽  
OHGEW KWEON ◽  
ASHRAF A. KHAN

ABSTRACT The objective of this study was to determine antimicrobial resistance and elucidate the resistance mechanism in nontyphoidal Salmonella enterica serovars isolated from food products imported into the United States from 2011 to 2013. Food products contaminated with antimicrobial-resistant nontyphoidal S. enterica were mainly imported from Taiwan, Indonesia, Vietnam, and China. PCR, DNA sequencing, and plasmid analyses were used to characterize antimicrobial resistance determinants. Twenty-three of 110 S. enterica isolates were resistant to various antimicrobial classes, including β-lactam, aminoglycoside, phenicol, glycopeptide, sulfonamide, trimethoprim, and/or fluoroquinolone antimicrobial agents. Twelve of the isolates were multidrug resistant strains. Antimicrobial resistance determinants blaTEM-1, blaCTX-M-9, blaOXA-1, tetA, tetB, tetD, dfrA1, dfrV, dhfrI, dhfrXII, drf17, aadA1, aadA2, aadA5, orfC, qnrS, and mutations of gyrA and parC were detected in one or more antimicrobial-resistant nontyphoidal S. enterica strains. Plasmid profiles revealed that 12 of the 23 antimicrobial-resistant strains harbored plasmids with incompatibility groups IncFIB, IncHI1, IncI1, IncN, IncW, and IncX. Epidemiologic and antimicrobial resistance monitoring data combined with molecular characterization of antimicrobial resistance determinants in Salmonella strains isolated from imported food products may provide information that can be used to establish or implement food safety programs to improve public health.


2001 ◽  
Vol 45 (4) ◽  
pp. 1037-1042 ◽  
Author(s):  
Daniel F. Sahm ◽  
James A. Karlowsky ◽  
Laurie J. Kelly ◽  
Ian A. Critchley ◽  
Mark E. Jones ◽  
...  

ABSTRACT Although changing patterns in antimicrobial resistance inStreptococcus pneumoniae have prompted several surveillance initiatives in recent years, the frequency with which these studies are needed has not been addressed. To approach this issue, the extent to which resistance patterns change over a 1-year period was examined. In this study we analyzed S. pneumoniaeantimicrobial susceptibility results produced in our laboratory with isolates obtained over 2 consecutive years (1997–1998 and 1998–1999) from the same 96 institutions distributed throughout the United States. Comparison of results revealed increases in resistant percentages for all antimicrobial agents studied except vancomycin. For four of the agents tested (penicillin, cefuroxime, trimethoprim-sulfamethoxazole, and levofloxacin), the increases were statistically significant (P < 0.05). Resistance to the fluoroquinolone remained low in both years (0.1 and 0.6%, respectively); in contrast, resistance to macrolides was consistently greater than 20%, and resistance to trimethoprim-sulfamethoxazole increased from 13.3 to 27.3%. Multidrug resistance, concurrent resistance to three or more antimicrobials of different chemical classes, also increased significantly between years, from 5.9 to 11%. The most prevalent phenotype was resistance to penicillin, azithromycin (representative macrolide), and trimethoprim-sulfamethoxazole. Multidrug-resistant phenotypes that included fluoroquinolone resistance were uncommon; however, two phenotypes that included fluoroquinolone resistance not found in 1997–1998 were encountered in 1998–1999. This longitudinal surveillance study of resistance inS. pneumoniae revealed that significant changes do occur in just a single year and supports the need for surveillance at least on an annual basis, if not continuously.


Author(s):  
Marshall Haley

Abstract An attack on America’s food supply could come in many forms such as: poisoning imported food, burning crop fields, or a conventional terrorist attacks on food centers; however, one of the most frightening and potentially disastrous scenarios for an attack is a coordinated, biological agroterrorism attack released on the nation’s livestock or crops.


1984 ◽  
Vol 13 (2) ◽  
pp. 268-276 ◽  
Author(s):  
Russell A. Hayward ◽  
George K. Criner ◽  
Steven P. Skinner

An econometric model of U.S. and Maine apple production and prices was estimated with ordinary least squares multiple regression. A Gauss-Seidel solution technique was used to examine the equation system goodness of fit and to forecast endogenous variable values. Results indicate that supply expansion in the U.S. and Maine will continue, but Maine's slower rate of increase will erode its market share. Apple prices for the U.S. and Maine are predicted to decline in real terms by the year 2000 if inflation rates exceed 3 percent annually during the period 1982 to 2000.


2016 ◽  
Vol 60 (4) ◽  
pp. 2567-2571 ◽  
Author(s):  
Daniel A. Tadesse ◽  
Aparna Singh ◽  
Shaohua Zhao ◽  
Mary Bartholomew ◽  
Niketta Womack ◽  
...  

ABSTRACTWe conducted a retrospective study of 2,149 clinicalSalmonellastrains to help document the historical emergence of antimicrobial resistance. There were significant increases in resistance to older drugs, including ampicillin, chloramphenicol, streptomycin, sulfamethoxazole, and tetracycline, which were most common inSalmonella entericaserotype Typhimurium. An increase in multidrug resistance was observed for each decade since the 1950s. These data help show howSalmonellaevolved over the past 6 decades, after the introduction of new antimicrobial agents.


2015 ◽  
Vol 2 (2) ◽  
pp. 112
Author(s):  
Marlina

 Vol. 2, No. 2 ABSTRACT A total of 97 V. parahaemolyticus isolate from Padang were examined for their resistance to 15 antibiotics. V. parahaemolyticus isolated behaved as resistant to sulfamethoxazole (100%), rifampin (95%) and tetracycline (75%) and sensitive to norfloxacin (96%). Ampicillin still sensitive for V. parahaemolyticus isolated from human stools. All of isolates were sensitive to namely chloramphenicol and floroquinolones (ciprofloxacin and norfloxacin agents). RAPD-PCR profiling with three primers (OPAR3, OPAR4 and OPAR8) produced four major clusters (R1, R2, R3 and R4), 7 minor clusters (I, II, III, IV, V, VI and VII) and three single isolates.  Keywords: V. parahaemolyticus, MDR, RAPD  1. D. Ottaviani, I. Bacchiocchi, L. Masini, F. Leoni, A. Carraturo, M. Giammarioli, and G. Sbaraglia, Antimicrobial susceptibility of potentially halophilic vibrios isolated from seafood, International Journal of Antimicrobial Agents 18: 135-140, (2001).2. A. Cespedes, and E. Larson, Knowledge, attitude and practices regarding antibiotic use among Latinos in the United States: Review and Recommendations, American Journal of Infection Control 34: 495-502, (2006).3. M. Lesmana, D. Subekti, C.H. Simanjuntak, P. Tjaniadi, J. R. Campbell, and B. A. Ofoyo, Vibrio parahaemolyticus associated with cholera-like diarrhea among patients in North Jakarta, Indonesia, Diagnostic Microbiology and Infectious Disease, 39: 71-75, (2001).4. S. Lu, B. Liu, B. Zhou, And R. E. Levin, Incidence and Enumeration of Vibrio parahaemolyticus in Shellfish from two retail Sources and the Genetic Diversity of isolates as Determined by RAPD-PCR Analysis, Food Biotechnology, 20: 193-209, (2006).5. M. Nishibuchi, Vibrio parahaemolyticus. In International handbook of foodborne pathogens, ed. M.D. Milliots and J. W. Bier, United States: Marcel Dekker, Inc. P, 2004, 237-252.6. L. Poirel, M. R. Martinez, H. Mammeri, A. Liard, and P. Nordmann, Origin of Plasmid-Mediated Quinolone Resistance Determinant QnrA, Antimicrobial Agents and Chemotherapy, 49: 3523-3525, (2005).7. S. Radu, N. Elhadi, Z. Hassan, G. Rusul, S. Lihan, N. Fifadara, Yuherman and E. Purwati, Characterization of Vibrio vulnificus isolated from cockles (Anadara granosa): antimicrobial resistance, plasmid profiles and random amplification            of polymorphic DNA analysis, FEMS Microbiology Letters, 165: 139–143, (1998).8. S. Radu, N. Ahmad, F. H. Ling, and A. Reezal, Prevalence and resistance             to antibiotics for Aeromonas species from retail fish in Malaysia, International of Journal Food Microbiology, 81: 261–266, (2003).9. B. Sarkar, N. R. Chowdhury, G. B. Nair, M. Nishibuchi, S. Yamasaki, Y. Takeda, S. K. Gupta, S. K. Bhattacharya, and Ramamurthy, Molecular characterization of Vibrio parahaemolyticus of similar serovars isolated from sewage and clinical cases of diarrhea in Calcutta, India,   World Journal of Microbiology and Biotechnology, 19: 771-776, (2003). 10. S. Schwarz, and E. Chaslus-Dancla, Use of antimicrobials in veterinary medicine and mechanisms of resistance, Veterinary Residue, 32: 201–225, (2001).11. H. Sörum, and T.M. L’Abèe-Lund,.  Antibiotic resistance in food-related bacteria – a result of interfering with the global web of bacterial genetics, International Journal of Food Microbiology, 78: 43–56, (2002).12. P. Tjaniadi, M. Lesmana, D. Subekti, N. Machpud, S. Komalarini, W. Santoso,     C. H. Simanjuntak, N. Punjabi, J. R. Campbell, W. K. Alexander, H. J. Beecham, A. L. Corwin, and B. A. Oyofo, Antimicrobial Resistance of Bacterial Pathogens Associated with Diarrheal Patients in Indonesia, American Journal   of Tropical Medicine and Hygiene,             68: 666-670, (2003).13. X. Zhao, and D. Drlica, Restricting              the Selection of Antibiotic-Resistant Mutants: A General Strategy Derived     from Fluoroquinolone Studies, Clinical Infectious Diseases, 33: S147-S156, (2001).   


Animals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3035
Author(s):  
Pongpreecha Malaluang ◽  
Elin Wilén ◽  
Johanna Lindahl ◽  
Ingrid Hansson ◽  
Jane M. Morrell

Bacteria develop resistance to antibiotics following low-level “background” exposure to antimicrobial agents as well as from exposure at therapeutic levels during treatment for bacterial infections. In this review, we look specifically at antimicrobial resistance (AMR) in the equine reproductive tract and its possible origin, focusing particularly on antibiotics in semen extenders used in preparing semen doses for artificial insemination. Our review of the literature indicated that AMR in the equine uterus and vagina were reported worldwide in the last 20 years, in locations as diverse as Europe, India, and the United States. Bacteria colonizing the mucosa of the reproductive tract are transferred to semen during collection; further contamination of the semen may occur during processing, despite strict attention to hygiene at critical control points. These bacteria compete with spermatozoa for nutrients in the semen extender, producing metabolic byproducts and toxins that have a detrimental effect on sperm quality. Potential pathogens such as Klebsiella pneumoniae, Escherichia coli, and Pseudomonas aeruginosa may occasionally cause fertility issues in inseminated mares. Antibiotics are added during semen processing, according to legislation, to impede the growth of these microorganisms but may have a detrimental effect on sperm quality, depending on the antimicrobial agent and concentration used. However, this addition of antibiotics is counter to current recommendations on the prudent use of antibiotics, which recommend that antibiotics should be used only for therapeutic purposes and after establishing bacterial sensitivity. There is some evidence of resistance among bacteria found in semen samples. Potential alternatives to the addition of antibiotics are considered, especially physical removal separation of spermatozoa from bacteria. Suggestions for further research with colloid centrifugation are provided.


1988 ◽  
Vol 71 (2) ◽  
pp. 415-433
Author(s):  
Milton A Luke ◽  
Herbert T Masumoto ◽  
Thomas Cairns ◽  
Harvey K Hundley

Abstract During a 5 year period from 1982 to 1986, the FDA Los Angeles District Laboratory analyzed 19 851 samples of domestic and imported food and feed commodities for pesticide residues. A single, rapid, multiresidue method was used. The resultant data have been compiled showing the commodities sampled and the identity and range of levels of pesticide residues detected, including an indication of those residue findings that did not comply with U.S. federal tolerance levels. The residue data presented should not be viewed as being representative of the U.S. food supply; rather, the results are indicative of a surveillance- and compliance-oriented sampling of various food shipments collected by the Los Angeles District.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S291-S292
Author(s):  
Nkuchia M M’ikanatha ◽  
Kelly E Kline ◽  
Sameh W Boktor ◽  
Xin Yin ◽  
Lisa Dettinger ◽  
...  

Abstract Background Antimicrobial resistance (AMR) in foodborne pathogens of animal origin, including nontyphoidal Salmonella (NTS), is a public health concern. Pennsylvania conducts integrated surveillance for AMR in NTS from human and animal sources in collaboration with the FDA and CDC National Antimicrobial Resistant Monitoring System (NARMS). Methods We reviewed pulsed-field gel electrophoresis (PFGE), antimicrobial susceptibility (SST) and whole-genome sequencing (WGS) data for isolates from animal and food sources, including 96 NTS from 2,520 meat samples (poultry, ground beef and pork chops) purchased during 2015–2017 from randomly selected retail outlets in Pennsylvania. SST to 15 antimicrobial agents was done on 109 NTS clinical isolates that had similar PFGE patterns to meat isolates. SST and WGS were used to characterize all isolates from meat and two clinical isolates from 2017. Results 28 (29.2%) and 17 (17.7%) NTS isolated from meat sources were resistant to ≥3 and ≥5 antibiotics classes, respectively. Resistance to ceftriaxone rose from 12% (3/25) in 2015 to 27% (10/37) in 2016 and resistance to amoxicillin/clavulanate also increased. Plasmid-mediated bla CMY-2 β-lactam resistance genes that hydrolyze extended-spectrum cephalosporins (ESC) increased from 12% in 2015 (3/25) to 18.9% (7/37) in 2016. Four blaCTX-M-65 genes that confer resistance to extended-spectrum β-lactamases (ESBLs) were identified in 2016 (n = 3) and 2017. Of the 109 clinical isolates, 25.7% demonstrated resistance to ≥3 and 11% to ≥5 antibiotics classes, respectively. No clinical isolates were resistant to ceftriaxone in 2015, 12.5% (6/48) and 24.3% (9/37) were resistant in 2016 and 2017, respectively. Resistance to amoxicillin/clavulanate was demonstrated in 8.3% (4/48) of isolates in 2016 (figure). Two clinical isolates carried blaCTX-M-65 ESB Ls genes and were resistant to eight antimicrobial agents (ACSSuTCxNalCot. Phenotype). Conclusion NTS (≥25%) from animal and human sources were multidrug-resistant and harbored CMY-2 and CTX-M-65 genes. Dissemination of genes that confer resistance to ESBLs and ESCs in NTS undermines recommended treatment for severe infections and underscores the need for One-Health surveillance and antimicrobial stewardship efforts. Disclosures All authors: No reported disclosures.


2002 ◽  
Author(s):  
Adrienne Chute ◽  
P. Elaine Kroe ◽  
Patricia Garner ◽  
Maria Polcari ◽  
Cynthia Jo Ramsey

Sign in / Sign up

Export Citation Format

Share Document