High-Pressure Homogenization for the Inactivation of Human Enteric Virus Surrogates

2009 ◽  
Vol 72 (11) ◽  
pp. 2418-2422 ◽  
Author(s):  
DORIS H. D'SOUZA ◽  
XIAOWEI SU ◽  
ADRIENNE ROACH ◽  
FEDERICO HARTE

Novel inactivation methods are needed to control the spread of foodborne viruses responsible for nonbacterial gastroenteritis worldwide. The advent of high-pressure homogenization combining high pressure, shear stress, and cavitation provides the opportunity to evaluate this technology for viral inactivation in fluid foods under continuous processing conditions. Our objective was to evaluate murine norovirus (MNV-1) and MS2 coliphage (single-stranded RNA) as human enteric virus surrogates for their susceptibility to a novel high-pressure homogenization process for application in commercial settings. Experiments were conducted in duplicate with MNV-1 and MS2 coliphage in phosphate-buffered saline, using homogenization pressures of 0, 100, 200, 250, and 300 MPa (the maximum achievable by the homogenizer), resulting in exposure temperatures of 24, 46, 63, 70, and 75°C, respectively, for <2 s. Only homogenization pressures of 300 MPa at 75°C showed inactivation of ~3 log PFU for MS2 from an initial ~6 log PFU. Also, MNV-1 showed inactivation of ~0.8 log PFU at 300 MPa. Further studies are warranted to validate this inactivation process, which can retain the sensory and nutritional value of fluid food and shows promise for application in industrial environments.

2011 ◽  
Vol 74 (11) ◽  
pp. 1840-1846 ◽  
Author(s):  
DORIS H. D'SOUZA ◽  
XIAOWEI SU ◽  
FEDERICO HARTE

With the increasing global spread of human noroviral infections and the emergence of highly virulent noroviral strains, novel inactivation methods are needed to control foodborne outbreaks. High pressure homogenization (HPH) is a novel method that can be applied for foodborne virus reduction in fluids being continuously processed. Our objective in the present study was to compare the titer reduction by HPH between feline calicivirus strain F9 (FCV-F9) and murine norovirus 1 (MNV-1) as surrogates for human noroviruses, and MS2 (single-stranded F-RNA coliphage) and somatic coliphage ϕX174 (single-stranded DNA) as indicators of fecal contamination. Duplicate experiments with each virus in phosphate-buffered saline were carried out with homogenization pressures of 0, 100, 200, 250, and 300 MPa, with exposure temperatures of 24, 46, 63, 70, and 75°C, respectively, for <2 s. FCV-F9 was found highly susceptible to HPH treatment pressures of 300 MPa, with a reduction of >4.95 log PFU/ml. Lower pressures of 250, 200, and 100 MPa resulted in reductions of 1.61, 0.60, and 0.18 log PFU/ml of FCV-F9, respectively, while MNV-1 was not reduced at these lower pressures. Coliphage ϕX174 showed no significant reduction at 300 MPa or lower homogenization pressures in comparison with MS2, which did show 3.3-log PFU/ml reduction at 300 MPa. Future studies using juices for industrial application of HPH to determine microbial inactivation with simultaneous retention of sensory and nutritional value of foods are needed.


2012 ◽  
Vol 75 (11) ◽  
pp. 1984-1990 ◽  
Author(s):  
KATIE MARIE HORM ◽  
FEDERICO MIGUEL HARTE ◽  
DORIS HELEN D'SOUZA

Novel processing technologies such as high pressure homogenization (HPH) for the inactivation of foodborne viruses in fluids that retain nutritional attributes are in high demand. The objectives of this research were (i) to determine the effects of HPH alone or with an emulsifier (lecithin) on human norovirus surrogates—murine norovirus (MNV-1) and feline calicivirus (FCVF9)—in skim milk and orange juice, and (ii) to determine HPH effects on FCV-F9 and MNV-1 in orange and pomegranate juice blends. Experiments were conducted in duplicate at 0, 100, 200, 250, and 300 MPa for <2 s and plaque was assayed in duplicate. In milk, FCV-F9 was reduced by ≥4 and ~1.3 log PFU/ml at 300 and 250 MPa, respectively, and ≥4- and ~1-log PFU/ml reductions were obtained in orange juice at 300 and 250 MPa, respectively. In orange juice or milk combined with lecithin, FCVF9 was reduced to nondetectable levels at 300 MPa, and by 1.77 and 0.78 log PFU/ml at 250 MPa. MNV-1 in milk was reduced by ~1.3 log PFU/ml only at 300 MPa, and by ~0.8 and ~0.4 log PFU/ml in orange juice at 300 and 250 MPa, respectively. MNV-1 in milk or orange juice containing lecithin at 300 MPa showed 1.32- and 2.5-log PFU/ml reductions, respectively. In the pomegranate-orange juice blend, FCV-F9 was completely reduced, and MNV-1 was reduced by 1.04 and 1.78 log PFU/ml at 250 and 300 MPa, respectively. These results show that HPH has potential for commercial use to inactivate foodborne virus surrogates in juices.


2012 ◽  
Vol 56 (2) ◽  
pp. 142-148 ◽  
Author(s):  
H. Ruiz-Espinosa ◽  
G.G. Amador-Espejo ◽  
M.E. Barcenas-Pozos ◽  
J.O. Angulo-Guerrero ◽  
H.S. Garcia ◽  
...  

2019 ◽  
Vol 15 ◽  
pp. 02035
Author(s):  
A. Morata ◽  
I. Loira ◽  
M.A. Bañuelos ◽  
A. Puig-Pujol ◽  
B. Guamis ◽  
...  

Ultra-High Pressure Homogenization Sterilization (UHPHS) allows the sterilization of fluid foods at low temperatures or even in refrigeration. UHPHS is a continuous technique that allows to process 10,000 L/h with a single pump working at 300 MPa with an imbalance of 1 MPa (Ypsicon EP2409583). During the process, fluid temperature increases less than 5 ∘C. The technique is sensory gentle not affecting molecules formed by covalent bonds so aroma and pigments are unaltered. During the process of white musts, the complete elimination of yeasts, bacteria and spores can be achieved and the must may remain unfermented for several months-years if stored in amicrobic conditions. The technique is also effective in the destruction of polyphenol oxidase (PPO) enzymes. Final size particle is 100–300 nm allowing to increase the availability of yeast assimilable nitrogen and opens the opportunity to nano-encapsulate flavours. Destruction of PPOs and elimination of microorganisms help to reduce sulphites in wines. UHPHS facilitates the use of new biotechnologies such as the use of non-Saccharomyces yeasts and yeast-bacteria co-inoculations by enabling a better implantation of the starters in absence of competition with wild grape microorganisms.


2009 ◽  
Vol 72 (12) ◽  
pp. 2623-2628 ◽  
Author(s):  
XIAOWEI SU ◽  
SVETLANA ZIVANOVIC ◽  
DORIS H. D'SOUZA

Chitosan is known to inhibit microorganisms of concern to plants, animals, and humans. However, the effect of chitosan on human enteric viruses of public health concern has not been extensively investigated. The purpose of this study was to determine the effect of chitosan on three human enteric viral surrogates: murine norovirus 1 (MNV-1), feline calicivirus F-9 (FCV-F9), and (ssRNA) bacteriophage MS2 (MS2). Chitosan oligosaccharide lactate (molecular weight of 5,000) and water-soluble chitosan (molecular weight of 53,000) at concentrations of 1.4, 0.7, and 0.35% were incubated at 37°C for 3 h with equal volumes of each virus at high (~7 log PFU/ml) and low (~5 log PFU/ml) titers. Chitosan effects on each treated virus were evaluated with standardized plaque assays in comparison to untreated virus controls. The water-soluble chitosan at 0.7% decreased the FCV-F9 titer by ~2.83 log PFU/ml, with decreasing effects at lower concentrations, and also decreased MS2 at high titers by ~1.18 to 1.41 log PFU/ml, regardless of the concentration used. Chitosan treatments at the concentrations studied had no effect on MNV-1 at high titers. Chitosan oligosaccharide showed similar trends against the viruses, but to a lesser extent compared with that of water-soluble chitosan. When lower virus titers (~5 log PFU/ml) were used, plaque reduction was observed for FCV-F9 and MS 2, but not MNV-1. The use of higher-molecular-weight chitosan and at higher concentrations with longer incubation may be necessary to inactivate MNV-1. These results in the plaque reduction of human enteric virus surrogates by chitosan treatment show promise for its potential application in the food environment.


2006 ◽  
Vol 69 (3) ◽  
pp. 596-601 ◽  
Author(s):  
JAHEON KOO ◽  
MICHAEL L. JAHNCKE ◽  
PAUL W. RENO ◽  
XIAOPEI HU ◽  
PARAMESWARAKUMAR MALLIKARJUNAN

Inactivation studies for Vibrio parahaemolyticus TX-2103 (serotype O3:K6) and Vibrio vulnificus MO-624 (clinical isolate) were conducted in phosphate-buffered saline (PBS) and in inoculated oysters under high-pressure processing conditions. V. parahaemolyticus was more resistant than V. vulnificus in PBS at all pressures and times. A 6-log reduction of V. parahaemolyticus and V. vulnificus in PBS at 241 MPa required 11 and 5 min, respectively, which included a 3-min pressure come-up time. A 4.5-log reduction of V. parahaemolyticus in oysters at 345 MPa required 7.7 min, which included a 6.7-min pressure come-up time. More than a 5.4-log reduction of V. vulnificus in oysters at 345 MPa occurred during the 6-min pressure come-up time. Both V. parahaemolyticus and V. vulnificus in PBS and in oysters were reduced to nondetectable numbers at 586 MPa during the 8- and 7-min pressure come-up times, respectively.


Author(s):  
Peter Pegler ◽  
N. David Theodore ◽  
Ming Pan

High-pressure oxidation of silicon (HIPOX) is one of various techniques used for electrical-isolation of semiconductor-devices on silicon substrates. Other techniques have included local-oxidation of silicon (LOCOS), poly-buffered LOCOS, deep-trench isolation and separation of silicon by implanted oxygen (SIMOX). Reliable use of HIPOX for device-isolation requires an understanding of the behavior of the materials and structures being used and their interactions under different processing conditions. The effect of HIPOX-related stresses in the structures is of interest because structuraldefects, if formed, could electrically degrade devices.This investigation was performed to study the origin and behavior of defects in recessed HIPOX (RHIPOX) structures. The structures were exposed to a boron implant. Samples consisted of (i) RHlPOX'ed strip exposed to a boron implant, (ii) recessed strip prior to HIPOX, but exposed to a boron implant, (iii) test-pad prior to HIPOX, (iv) HIPOX'ed region away from R-HIPOX edge. Cross-section TEM specimens were prepared in the <110> substrate-geometry.


Sign in / Sign up

Export Citation Format

Share Document