Evaluation of Methods for Inoculating Dry Powder Foods with Salmonella enterica, Enterococcus faecium, or Cronobacter sakazakii

2019 ◽  
Vol 82 (6) ◽  
pp. 1082-1088 ◽  
Author(s):  
JUSTIN R. WIERTZEMA ◽  
CHRISTIAN BORCHARDT ◽  
ANNA K. BECKSTROM ◽  
KAMAL DEV ◽  
PAUL CHEN ◽  
...  

ABSTRACT Salmonella and Cronobacter are two bacteria of concern in powdered food ingredients with low water activity, due to their ability to remain viable for long periods of time. There is great interest in studying the survival of these bacteria in powdered foods, but discrepancies have been reported between broth-grown and lawn-grown bacterial cells and their thermal resistance and desiccation tolerance once inoculated onto powdered foods. The purpose of this study was to evaluate three different powdered food inoculation methods, two broth-grown and one lawn-grown. To evaluate these methods on three types of powdered food matrices, Salmonella enterica serovar Typhimurium LT2 (ATCC 700720), Salmonella surrogate Enterococcus faecium (NRRL B-2354), and Cronobacter sakazakii (ATCC 29544) were inoculated onto nonfat dry milk powder, organic soy flour, and all-purpose flour using one of the three previously developed inoculation methods. In the first broth-grown method, labeled broth-grown pelletized inoculation, a bacterial cell pellet was added to powdered foods directly and mixed with a sterile wooden stick. The second broth-grown method, labeled broth-grown spray inoculation, used a chromatography reagent sprayer to spray the bacterial cell suspension onto the powdered foods. The third inoculation method, lawn-grown liquid inoculation, made use of a spot inoculation and a stomacher to incorporate each bacterium into the powdered foods. Results indicated that the method of inoculation of each powder impacted repeatability and bacteria survivability postequilibration (4 to 6 days). Broth-grown spray inoculation, regardless of the powder and bacterium, resulted in the highest log reduction, with an average ∼1-log CFU/g reduction following equilibration. Broth-grown pelletized inoculation resulted in the second-highest log reduction (∼0.79 log CFU/g), and finally, lawn-grown liquid inoculation was the most stable inoculation method of the three, with ∼0.52-log CFU/g reduction. Overall, the results from this inoculation study demonstrate that inoculation methodologies impact the desiccation tolerance and homogeneity of C. sakazakii, E. faecium, and Salmonella Typhimurium LT2.

2015 ◽  
Vol 78 (7) ◽  
pp. 1259-1265 ◽  
Author(s):  
LAUREN S. BOWMAN ◽  
KIM M. WATERMAN ◽  
ROBERT C. WILLIAMS ◽  
MONICA A. PONDER

Salmonellosis has been increasingly associated with contaminated spices. Identifying inoculation and stabilization methods for Salmonella on whole spices is important for development of validated inactivation processes. The objective of this study was to examine the effects of inoculation preparation on the recoverability of Salmonella enterica from dried whole peppercorns and cumin seeds. Whole black peppercorns and cumin seeds were inoculated with S. enterica using one dry transfer method and various wet inoculation methods: immersion of spice seeds in tryptic soy broth (TSB) plus Salmonella for 24 h (likely leading to inclusion of Salmonella in native microbiota biofilms formed around the seeds), application of cells grown in TSB, and/or application of cells scraped from tryptic soy agar (TSA). Postinoculation seeds were dried to a water activity of 0.3 within 24 h and held for 28 days. Seeds were sampled after drying (time 0) and periodically during the 28 days of storage. Salmonella cells were enumerated by serial dilution and plated onto xylose lysine Tergitol (XLT4) agar and TSA. Recovery of Salmonella was high after 28 days of storage but was dependent on inoculation method, with 4.05 to 6.22 and 3.75 to 8.38 log CFU/g recovered from peppercorns and cumin seeds, respectively, on XLT4 agar. The changes in surviving Salmonella (log CFU per gram) from initial inoculation levels after 28 days were significantly smaller for the biofilm inclusion method (+0.142pepper, +0.186cumin) than for the other inoculation methods (−0.425pepper, −2.029cumin for cells grown on TSA; −0.641pepper, −0.718cumin for dry transfer; −1.998pepper for cells grown in TSB). In most cases, trends for reductions of total aerobic bacteria were similar to those of Salmonella. The inoculation method influenced the recoverability of Salmonella from whole peppercorns and cumin seeds after drying. The most stable inoculum strategies were dry transfer, 24-h incubation of Salmonella and spices in TSB (i.e., potential inclusion of Salmonella within native microbiota biofilms), and inoculation of Salmonella cells grown on TSA subsequent to drying. However, with the dry transfer method it was difficult to obtain the large amount of inoculum needed for inactivation studies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Priyanka Shaw ◽  
Naresh Kumar ◽  
Sohail Mumtaz ◽  
Jun Sup Lim ◽  
Jung Hyun Jang ◽  
...  

AbstractA growing body of literature has recognized the non-thermal effect of pulsed microwave radiation (PMR) on bacterial systems. However, its mode of action in deactivating bacteria has not yet been extensively investigated. Nevertheless, it is highly important to advance the applications of PMR from simple to complex biological systems. In this study, we first optimized the conditions of the PMR device and we assessed the results by simulations, using ANSYS HFSS (High Frequency Structure Simulator) and a 3D particle-in-cell code for the electron behavior, to provide a better overview of the bacterial cell exposure to microwave radiation. To determine the sensitivity of PMR, Escherichia coli and Staphylococcus aureus cultures were exposed to PMR (pulse duration: 60 ns, peak frequency: 3.5 GHz) with power density of 17 kW/cm2 at the free space of sample position, which would induce electric field of 8.0 kV/cm inside the PBS solution of falcon tube in this experiment at 25 °C. At various discharges (D) of microwaves, the colony forming unit curves were analyzed. The highest ratios of viable count reductions were observed when the doses were increased from 20D to 80D, which resulted in an approximate 6 log reduction in E. coli and 4 log reduction in S. aureus. Moreover, scanning electron microscopy also revealed surface damage in both bacterial strains after PMR exposure. The bacterial inactivation was attributed to the deactivation of oxidation-regulating genes and DNA damage.


2002 ◽  
Vol 65 (8) ◽  
pp. 1215-1220 ◽  
Author(s):  
CHIA-MIN LIN ◽  
SARAH S. MOON ◽  
MICHAEL P. DOYLE ◽  
KAY H. McWATTERS

Iceberg lettuce is a major component in vegetable salad and has been associated with many outbreaks of foodborne illnesses. In this study, several combinations of lactic acid and hydrogen peroxide were tested to obtain effective antibacterial activity without adverse effects on sensory characteristics. A five-strain mixture of Escherichia coli O157:H7, Salmonella enterica serotype Enteritidis, and Listeria monocytogenes was inoculated separately onto fresh-cut lettuce leaves, which were later treated with 1.5% lactic acid plus 1.5% hydrogen peroxide (H2O2) at 40°C for 15 min, 1.5% lactic acid plus 2% H2O2 at 22°C for 5 min, and 2% H2O2 at 50°C for 60 or 90 s. Control lettuce leaves were treated with deionized water under the same conditions. A 4-log reduction was obtained for lettuce treated with the combinations of lactic acid and H2O2 for E. coli O157:H7 and Salmonella Enteritidis, and a 3-log reduction was obtained for L. monocytogenes. However, the sensory characteristics of lettuce were compromised by these treatments. The treatment of lettuce leaves with 2% H2O2 at 50°C was effective not only in reducing pathogenic bacteria but also in maintaining good sensory quality for up to 15 days. A ≤4-log reduction of E. coli O157:H7 and Salmonella Enteritidis was achieved with the 2% H2O2 treatment, whereas a 3-log reduction of L. monocytogenes was obtained. There was no significant difference (P > 0.05) between pathogen population reductions obtained with 2% H2O2 with 60- and 90-s exposure times. Hydrogen peroxide residue was undetectable (the minimum level of sensitivity was 2 ppm) on lettuce surfaces after the treated lettuce was rinsed with cold water and centrifuged with a salad spinner. Hence, the treatment of lettuce with 2% H2O2 at 50°C for 60 s is effective in initially reducing substantial populations of foodborne pathogens and maintaining high product quality.


2017 ◽  
Vol 8 ◽  
Author(s):  
Emilie Lang ◽  
Stéphane Guyot ◽  
Pablo Alvarez-Martin ◽  
Jean-Marie Perrier-Cornet ◽  
Patrick Gervais

Plant Disease ◽  
2019 ◽  
Vol 103 (4) ◽  
pp. 677-684 ◽  
Author(s):  
Krishna Ghimire ◽  
Kristina Petrović ◽  
Brian J. Kontz ◽  
Carl A. Bradley ◽  
Martin I. Chilvers ◽  
...  

One hundred fifty-two Diaporthe isolates were recovered from symptomatic soybean (Glycine max) stems sampled from the U.S. states of Iowa, Indiana, Kentucky, Michigan, and South Dakota. Using morphology and DNA sequencing, isolates were identified as D. aspalathi (8.6%), D. caulivora (24.3%), and D. longicolla (67.1%). Aggressiveness of five isolates each of the three pathogens was studied on cultivars Hawkeye (D. caulivora and D. longicolla) and Bragg (D. aspalathi) using toothpick, stem-wound, mycelium contact, and spore injection inoculation methods in the greenhouse. For D. aspalathi, methods significantly affected disease severity (P < 0.001) and pathogen recovery (P < 0.001). The relative treatment effects (RTE) of stem-wound and toothpick methods were significantly greater than for the other methods. For D. caulivora and D. longicolla, a significant isolate × method interaction affected disease severity (P < 0.05) and pathogen recovery (P < 0.001). Significant differences in RTEs were observed among D. caulivora and D. longicolla isolates only when the stem-wound and toothpick methods were used. Our study has determined that the stem-wound and toothpick methods are reliable to evaluate the three pathogens; however, the significant isolate × method interactions for D. caulivora and D. longicolla indicate that multiple isolates should also be considered for future pathogenicity studies.


Author(s):  
Rachel K Streufert ◽  
Susanne E Keller ◽  
Joelle K Salazar

Growth on solid media as sessile cells is believed to increase the desiccation tolerance of Salmonella enterica . However, the reasons behind increased resistance have not been well explored. In addition, the same effect has not been examined for other foodborne pathogens such as pathogenic Escherichia coli or Listeria monocytogenes . The purpose of this research was two-fold: first, to determine the role of oxygenation during growth on the desiccation resistance of S. enterica , E. coli , and L. monocytogenes , and second, to determine the effect of sessile versus planktonic growth on the desiccation resistance of these pathogens. Three different serotypes each of Salmonella , E. coli , and L. monocytogenes were cultured in trypticase soy broth with 0.6% yeast extract (TSBYE), with (aerobic) shaking or on TSBYE with agar (TSAYE) under either aerobic or anaerobic conditions and harvested in stationary phase. After adding cell suspensions to cellulose filter disks, pathogen survival was determined by enumeration at 0 and after drying for 24 h. Results showed statistical differences in harvested initial populations prior to drying (0 h). For Salmonella , a correlation was found between high initial population and greater survival on desiccation (p = 0.05). In addition, statistical differences (p ≤ 0.05) between survival based on growth type were identified. However, differences found were not the same for the three pathogens, or between their serotypes. In general, Salmonella and E. coli desiccation resistance followed the pattern of aerobic agar media ≥ liquid media ≥ anaerobic agar media. For L. monocytogenes serotypes, resistance to desiccation was not statistically different based on mode of growth. These results indicate growth on solid media under aerobic conditions is not always necessary for optimal desiccation survival but may be beneficial when the desiccation resistance of the test serotype is unknown.


Author(s):  
Yu Cao ◽  
Katherine Dever ◽  
Sathesh Kumar Sivasankaran ◽  
Scott V. Nguyen ◽  
Guerrino Macori ◽  
...  

Cronobacter sakazakii is a typical example of a xerotolerant bacterium. It is epidemiologically linked to low moisture foods like powdered infant formula (PIF) and is associated with high fatality rates among neonates. We characterized the xerotolerance in a clinically isolated strain, C. sakazakii ATCC™29544 T , and compared the desiccation tolerance with an environmental strain, C. sakazakii SP291, whose desiccation tolerance was previously characterized. We found that, although the clinical strain was desiccation-tolerant, the level of tolerance was compromised when compared to the environmental strain. RNA-seq based deep transcriptomic characterization identified a unique transcriptional profile in the clinical strain compared to what was already known for the environmental strain. As RNA-seq was also carried out in different TSB growth conditions, genes that were expressed specifically under desiccated conditions were identified and denoted as desiccation responsive genes (DRGs). Interestingly, these DRGs included transcriptomic factors like fnr , ramA, and genes associated with inositol metabolism, a phenotype as yet unreported in C. sakazakii . Further, the clinical strain did not express the proP gene, which was previously reported to be very important for desiccation survival and persistence. Interestingly, analysis of the plasmid genes showed that the iron metabolism in desiccated C. sakazakii ATCC™29544 T cells specifically involved the siderophore cronobactin encoded by the iucABCD genes. Confirmatory studies using qRT-PCR determined that, though the secondary desiccation response genes were upregulated in C. sakazakii ATCC™29544 T , the level of up-regulation was lower compared to that in C. sakazakii SP291. All these factors could collectively contribute to the compromised desiccation tolerance in the clinical strain. IMPORTANCE Cronobacter sakazakii has in past led to outbreaks, particularly associated with food that are low in moisture content. This species has adapted to survive in low water conditions and can survive in such environments for long periods. These characteristics have enabled the pathogen to contaminate powder infant formula, a food matrix with which the pathogen has been epidemiologically associated. Even though clinically adapted strains can also be isolated, there is no information on how the clinical strains adapt to low moisture environments. Our research assessed the adaptation of a clinically isolated strain to low moisture survival on sterile stainless steel coupons and compared the survival to a highly desiccation-tolerant environmental strain. We found that, even though the clinical strain is desiccation-tolerant, the rate of tolerance was compromised compared to the environmental strain. A deeper investigation using RNA-seq identified that the clinical strain used pathways different from that of the environmental strain to adapt to low moisture conditions. This shows that the adaptation to desiccation conditions, at least for C. sakazakii , is strain-specific and that different strains have used different evolutionary strategies for adaptation.


2018 ◽  
Vol 81 (3) ◽  
pp. 386-393 ◽  
Author(s):  
Laura Purevdorj-Gage ◽  
Brian Nixon ◽  
Kyle Bodine ◽  
Qilong Xu ◽  
William T. Doerrler

ABSTRACTA method for microscopic enumeration of viable Salmonella enterica in meat samples was developed by using the LIVE/DEAD BacLight kit technology. A two-step centrifugation and wash process was developed to clean the samples from food and chemical impurities that might otherwise interfere with the appropriate staining reactions. The accuracy of the BacLight kit–based viability assessments was confirmed with various validation tests that were conducted by following the manufacturer's instructions. For the biocide challenge tests, chicken parts each bearing around 8.5 log of S. enterica were sprayed with common food sanitizers such as 1,3-dibromo-5,5-dimethylhydantoin (DBDMH), lactic acid (LA), and peracetic acid (PAA). The log reduction (LR) of S. enterica for each test biocide was evaluated by microscopic and conventional culture plate methods. The results show that both LA and PAA treatments generated a greater number of microscopic counts compared with the corresponding plate counts with differences being around half a log. This discrepancy is believed to occur when cells enter a so-called viable but nonculturable (VBNC) state, and to our knowledge, this is the first report documenting the presence of VBNC in PAA- and LA-treated food samples. In contrast, the BacLight-based viable counts were comparable to the culture-based enumerations of all DBDMH-treated samples. Therefore, we concluded that DBDMH-treated meat did not contain significant VBNC populations of S. enterica. A detailed description of our spray system, the dye validation, and the treatment reproducibility are also provided in this work.


2015 ◽  
Vol 78 (8) ◽  
pp. 1467-1471 ◽  
Author(s):  
EMEFA ANGELICA MONU ◽  
MALCOND VALLADARES ◽  
DORIS H. D'SOUZA ◽  
P. MICHAEL DAVIDSON

Produce has been associated with a rising number of foodborne illness outbreaks. While much produce is consumed raw, some is treated with mild heat, such as blanching or cooking. The objectives of this research were to compare the thermal inactivation kinetics of Listeria monocytogenes, Salmonella enterica, Shiga toxin–producing Escherichia coli (STEC) O157:H7, and non-O157 STEC in phosphate-buffered saline (PBS; pH 7.2) and a spinach homogenate and to provide an estimate of the safety of mild heat processes for spinach. Five individual strains of S. enterica, L. monocytogenes, STEC O157:H7, and non-O157 STEC were tested in PBS in 2-ml glass vials, and cocktails of the organisms were tested in blended spinach in vacuum-sealed bags. For Listeria and Salmonella at 56 to 60°C, D-values in PBS ranged from 4.42 ± 0.94 to 0.35 ± 0.03 min and 2.11 ± 0.14 to 0.16 ± 0.03 min, respectively. D-values at 54 to 58°C were 5.18 ± 0.21 to 0.53 ± 0.04 min for STEC O157:H7 and 5.01 ± 0.60 to 0.60 ± 0.13 min for non-O157 STEC. In spinach at 56 to 60°C, Listeria D-values were 11.77 ± 2.18 to 1.22 ± 0.12 min and Salmonella D-values were 3.51 ± 0.06 to 0.47 ± 0.06 min. D-values for STEC O157:H7 and non-O157 STEC were 7.21 ± 0.17 to 1.07 ± 0.11 min and 5.57 ± 0.38 to 0.99 ± 0.07 min, respectively, at 56 to 60°C. In spinach, z-values were 4.07 ± 0.16, 4.59 ± 0.26, 4.80 ± 0.92, and 5.22 ± 0.20°C for Listeria, Salmonella, STEC O157:H7, and non-O157 STEC, respectively. Results indicated that a mild thermal treatment of blended spinach at 70°C for less than 1 min would result in a 6-log reduction of all pathogens tested. These findings may assist the food industry in the design of suitable mild thermal processes to ensure food safety.


Sign in / Sign up

Export Citation Format

Share Document