Prevalence, drug resistance, and virulence genes of potential pathogenic bacteria in pasteurized milk of Chinese Fresh Milk Bar

Author(s):  
Shifeng Wang ◽  
Zhongna Yu ◽  
Jun Wang ◽  
Harvey Ho ◽  
Yongxin Yang ◽  
...  

Fresh Milk Bar (FMB), an emerging dairy retail franchise, is used to instantly produce and sell pasteurized milk and other dairy products in China. However, the quality and safety of pasteurized milk in FMB have received little attention. The objective of this study is to investigate the prevalence, antimicrobial resistance, and virulence genes of Escherichia coli (E. coli) , Staphylococcus aureus (S. aureus) , and Streptococcus in 205 pasteurized milk samples collected from FMBs in China. Four (2.0%) isolates of E. coli , seven (3.4%) isolates of S. aureus , and three (1.5%) isolates of S. agalactiae  were isolated and identified. The E. coli  isolates were resistant to amikacin (100%), streptomycin (50%), and tetracycline (50%). Their detected resistance genes include  aac(3)-III (75%), blaTEM  (25%), aadA  (25%), aac(3)-II  (25%), catI  (25%) and qnrB (25%). The S. aureus  isolates were mainly resistant to penicillin G (71.4%), trimethoprim-sulfamethoxazole (71.4%), kanamycin (57.1%), gentamicin (57.1%), amikacin (57.1%) and clindamycin (57.1%).  blaZ (42.9%),  mecA (28.6%), ermB (14.3%) and ermC  (14.3%) were detected as their resistance genes. The Streptococcus strains were mainly resistant to tetracycline (66.7%) and contained resistance genes:  pbp2b (33.3%) and tetM (33.3%). The virulence genes eae  and stx2  were only found in one E. coli  strain (25%), and sec  was detected in two S. aureus strains(28.6%), while bca  was detected in one  S. agalactiae  strain (33.3%) .  The results of this study indicate that bacteria with drug resistance and virulence genes isolated from the pasteurized milk of FMB are a potential risk to consumers' health.

Author(s):  
K. A. Nikiforov ◽  
L. V. Anisimova ◽  
G. N. Odinokov ◽  
A. V. Fadeeva ◽  
L. A. Novichkova ◽  
...  

A set of primers for detection of genes encoding resistance to streptomycin ( strA, strB ), tetracyclin ( tetA, tetR ), chloramphenicol ( catА ), kanamycin ( npt , aphA ), vankomycin ( sanA ), polymyxin ( pmrD ) has been developed with the aim of rapid and effective detection of drug-resistant strains of dangerous bacterial infections agents. Efficacy of constructed primers has been confirmed against a panel of 40 Yersinia pestis, 49 Vibrio cholerae, and 2 Escherichia coli strains from the State collection of pathogenic bacteria of the RAPI “Microbe”. Drug-resistance genes ntp and catA have been detected in plague agent strains , strA, strB , npt , aphA , tetA and tetR - in cholera agent; strA , tetR , ntp and aphA - in pathogenic strain E. coli О157:H7. Determined is universal character of the designed primers for drug-resistance genes detection in these pathogenic bacteria species.


2021 ◽  
Vol 17 (1) ◽  
pp. 126-131
Author(s):  
Amutha Santhanam ◽  

The emerging NDM-producing Enterobactereciae is a major threat to public health. The association of NDM-7 with sequence type 101 E. coli is identified in very few numbers. Therefore, it is of interest to analyse the whole genome sequence of NDM-producing uropathogenic E. coli XA31 that was found to carry numerous drug resistance genes of different antibiotic classes. The isolate E. coli belongs to ST-101 carrying blaNDM-7 coexisting with several resistance genes blaOXA-1, blaTEM1-A, blaCTX-M15, aac(6')-Ib-cr, catB3, tetB. Resfinder predicts this and four other plasmid replicons were identified using the Plasfinder in the CGE platform. The high transferable IncX3 plasmid was found to carry the NDM-7 gene. Thus, we the report the combination of NDM-7-ST101-IncX3 in India. The combination of this epidemic clone with NDM-7 is highly required to develop an effective infection control strategy.


2021 ◽  
Vol 1 (1) ◽  
pp. 17-20
Author(s):  
Ahmed Abd El-Mawgoud ◽  
Azza El-Sawah ◽  
Soad Nasef ◽  
Al-Hussien Dahshan ◽  
Ahmed Ali

In the current study, ten avian pathogenic E. coli (APEC) isolates of the most predominant APEC serogroups isolated from broiler chickens in Egypt were screened for their virulence and antimicrobial resistance genes pattern using PCR. Five selected virulence gene patterns were further investigated for their in-vivo pathogenicity test. Results showed a 100% prevalence of the β-lactams and tetracyclines resistance genes. However, aminoglycoside and quinolone resistance genes were not detected. Also, 80% of the tested isolates harbored mcr-1 gene, colistin resistance gene. In-vivo pathogenic strains consistently harbored the virulence gene pattern of fimH, fimA, papC, iutA, and tsh. Additionally, the tsh gene was consistently detected with lethal APEC isolates in day-old chicks. These results highlighted the high prevalence of antimicrobial and virulence genes in APEC that potentially represent a public health concern. In this study, the virulence genes fimH, fimA, papC, iutA, and tsh were the most common virulence gene patterns associated with pathogenicity in day-old chicks.


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Hassan Momtaz ◽  
Rahil Farzan ◽  
Ebrahim Rahimi ◽  
Farhad Safarpoor Dehkordi ◽  
Negar Souod

The aims of the current study were to detect the virulence factors and antibiotic resistance of Shiga toxin-producingE. coli, in animal milk and dairy products in Iran. AfterE. colidentification with culture method, PCR assay were developed for detection of pathogenic genes, serotypes and antibiotic resistance genes ofE. coli. Results showed that out of 719 samples, 102 (14.18%) were confirmed to be positive forE. coliand out of 102 positive samples, 17.64% were O26 and 13.72% were O157 and 1.96% were O91 and 1.96% were O145 serotypes. Totally, the prevalence ofstx1 andpapAgenes were the highest while the prevalence ofsfaSandfyuAwere the lowest in the positive samples. PCR results showed thattetA, tetBwere the highest (64.70%) andaac(3)-IVwere the lowest (27.45%) antibiotic resistant genes inE. colipositive samples. Our study indicated that the isolatedE. colitrains in these regions had a highest antibiotic resistance to tetracycline (58.82%) and the lowest to nitrofurantoin (3.92%).tetAgene andE. coliO157 serotype had highest andaac(3)-IVgene, andE. coliO145 serotype had a lowest frequency rates of antibiotics resistance genes, in the region.


2016 ◽  
Vol 12 (33) ◽  
pp. 135
Author(s):  
Najia Ouazzani Taybi ◽  
Amine Arfaoui ◽  
Milouda Chebabe ◽  
Ebrahim Alwashali ◽  
Mohammed Ouhssine ◽  
...  

This work studies the consumption by students of the University Ibn Tofail (Morocco) of a number of dairy products, including milk, yogurt, cheese and butter. The survey sample of the population was random and was composed of 314 students; (58.6% women and 41.4% men). The results of the survey show that 89% of the surveyed population consume dairy products while 11% did not consume them. Of those, 57.3% of the population prefer to consume pasteurized milk and 36% prefer fresh milk, 84% consume yogurt, 84% consume cheese, 55% consume butter and 75% consume milk-based nutraceuticals. The study explored reasons for not consuming more dairy products. 57% of the population surveyed responded that the price of the product is the main reason for not consuming more, 11.8% of this population responded that it is a lack of interest in the product and distrust of the nutritional value of the products, while 19.8% of the population suggested that the lack of availability of these products in the market is the cause.


2020 ◽  
Author(s):  
Raymond Mudzana ◽  
Rooyen T Mavenyengwa ◽  
Muchaneta Gudza-Mugabe

Abstract Background: Streptococcus agalacticae (Group B Streptococcus, GBS) is one of the most important causative agents of serious infections among neonates. This study was carried out to identify antibiotic resistance and virulence genes associated with GBS isolated from pregnant women.Methods: A total of 43 GBS isolates were obtained from 420 vaginal samples collected from HIV positive and negative women who were 13-35 weeks pregnant attending Antenatal Care at Chitungwiza and Harare Central Hospitals in Zimbabwe. Identification tests of GBS isolates was done using standard bacteriological methods and molecular identification testing. Antibiotic susceptibility testing was done using the modified Kirby-Bauer method and E-test strips. The boiling method was used to extract DNA and Polymerase Chain Reaction (PCR) was used to screen for 13 genes. Data was fed into SPSS 24.0.Results: Nine distinct virulence gene profiles were identified and hly-scpB-bca-rib 37.2% (16/43) was common. The virulence genes identified were namely hly 97.8% (42/43), scpB 90.1% (39/43), bca 86.0% (37/43), rib 69.8% (30/43) and bac 11.6% (5/43). High resistance to tetracycline 97.7% (42/43) was reported followed by 72.1% (31/43) cefazolin, 69.8% (30/43) penicillin G, 58.1% (25/43) ampicillin, 55.8% (24/43) clindamycin, 46.5% (20/43) ceftriaxone, 34.9% (15/43) chloramphenicol, and 30.2% (13/43) for both erythromycin and vancomycin using disk diffusion. Antibiotic resistance genes among the resistant and intermediate-resistant isolates showed high frequencies for tetM 97.6% (41/42) and low frequencies for ermB 34.5% (10/29), ermTR 10.3% (3/29), mefA 3.4% (1/29), tetO 2.4% (1/42) and linB 0% (0/35). The atr housekeeping gene yielded 100% (43/43) positive results, whilst the mobile genetic element IS1548 yielded 9.3% (4/43).Conclusion: The study showed high prevalence of hly, scpB, bca and rib virulence genes in S. agalactiae strains isolated from pregnant women. Tetracycline resistance was predominantly caused by the tetM gene, whilst macrolide resistance was predominantly due to the presence of erm methylase, with the ermB gene being more prevalent. Multi-drug resistance coupled with the recovery of resistant isolates to antimicrobial agents such as penicillins indicates the importance of GBS surveillance and susceptibility tests. It was also observed that in vitro phenotypic resistance is not always accurately predicted by resistance genotypes.


2018 ◽  
Vol 16 (3) ◽  
pp. 4-17 ◽  
Author(s):  
Olga M. Zemlyanko ◽  
Tatyana M. Rogoza ◽  
Galina A. Zhouravleva

Multiple drug resistance (MDR) to widening range of antibiotics emerging in increasing variety of pathogenic bacteria is a serious threat to the health of mankind nowadays. This is partially due to an uncontrolled usage of antibiotics not only in clinical practice, but also in various branches of agriculture. MDR is affected by two mechanisms: (1) accumulation of resistance genes as a result of intensive selection caused by antibiotics, and (2) active horizontal transfer of resistance genes. To unveil the reasons of bacterial multiresistance to antibiotics, it is necessary to understand the mechanisms of antibiotics action as well as the ways how either resistance to certain antibiotics emerge or resistance genes accumulate and transfer among bacterial strains. Current review is devoted to all these problems.


Author(s):  
O. C. Adekunle ◽  
A. J. Falade- Fatila ◽  
R. Ojedele ◽  
G. Odewale

The emerging drug resistance, especially among the Escherichia coli (E.coli) isolates from pregnant women, spread rapidly within the community. Urinary tract infection (UTI) is a well-known bacterial infection posing serious health problem in pregnant women. Also, multi-drug resistance is becoming rampant, and it is of serious public health concern. Treatment of E. coli is now a challenge due to continuous increase in resistance towards commonly prescribed antibiotics, thus posing a threat to treatment. Hence, the aim of the study is to determine antibiotic resistance genes in some multiple antibiotic resistant E.coli from apparently healthy pregnant women in Osun State. A cross-sectional study design was used to collect 150 mid-stream urine samples from apparently healthy pregnant women from March, 2018 to September, 2018. A well structured questionnaire and informed consent were used for data collection. Standard loop technique was used to place 0.001 ml of urine on Cysteine Lactose Electrolyte Deficient (CLED) medium, Blood agar, MacConkey agar and incubated at 37 °C for 24 h. A standard agar disc diffusion method was used to determine antimicrobial susceptibility pattern of the isolates. The molecular detection of the resistant genes was done using PCR techniques. The ages of women enrolled in this study ranges from 22 to 42 years (mean ± standard deviation = 31 ± 4.7 years). Escherichia coli showed high percentage of resistance to ampicillin and low resistance to ciprofloxacin and penicillin. All the E. coli isolates were sensitive to levofloxacin, and most were resistant to Meropenem. Multiple drug resistance was observed in all the isolates. Resistance genes in VIM 390bp, bla ctx-M 585bp and TEM 517bp were detected in some of the representative E. coli isolates profiled. This study identified the presence of Multi-drug resistance genes in E. coli associated UTI among pregnant women in Osogbo.


2020 ◽  
Vol 23 (4) ◽  
pp. 432-442
Author(s):  
W. Elsherif ◽  
D. Ali

Food safety is a worldwide health goal so foodborne diseases are a main health concern. A total 150 of dairy products samples (locally made yoghurt, ice cream and Talaga cheese) (50 for each type) were examined for E.coli O157:H7 detection and PCR confirmation using fliCH7 gene. E. coli O157:H7 was detected at 18%, 4%, 8% respectively, in samples. The isolates showed broad antibiotic resistance against vancomycin (84.6%), penicillin G (76.9%), cloxacillin (69.2%) and tetracycline (61.5%). Because of increasing number of microorganisms that are resistant to multiple antibiotics causing continuing economic losses in dairy manufacturing, there is an urgent need for development of alternative, cost-effective, and efficient antimicrobial agents to overcome antimicrobial resistance. Here, silver nanoparticle (AgNPs) solution was prepared, identified by transmission electron microscopy (TEM) with an average size 26.5 nm and examined for bactericidal activity against E. coli O157:H7 by using well diffusion assay. The mean inhibition zones of 25 and 50 µg/ml concentrations of Ag-NPs were 15.0±1.2 and 20.9±1.4 mm, respectively. In addition, the statistical analysis showed highly significant differences in the bactericidal effect of different Ag-NPs concentrations on E. coli O157:H7 strains. Bacterial sensitivity to nanoparticles is a key factor in manufacture, so nanoparticles were considered suitable for long life application in food packaging and food safety.


2020 ◽  
Vol 14 (3) ◽  
pp. 1687-1693
Author(s):  
Suk-Yul Jung

In this study, using pathogenic and non-pathogenic bacteria, it was analyzed whether a polyclonal serum and a monoclonal antibody to A. culbertsoni mannose-binding protein (MBP) could inhibit its interaction. The association of the amoeba with E. coli O157:H7 was very strong at a level of over 100%, but the non-pathogenic E. coli strain was about five times lower at 22%. Pathogenic K. pnueumoniae also showed high association with amoeba by about 92% as compared with pathogenic E. coli O157:H7 and S. agalactiae. The polyclonal serum to MBP inhibited E. coli O157:H7 association to amoeba 2.5 times more than untreated E. coli O157:H7. Monoclonal antibody to MBP also inhibited bacterial association with amoeba but was not stronger than the polyclonal serum. Pathogenic E. coli O157:H7 showed about 88% invasion into amoeba and decreased about 22% as compared with associated E. coli O157:H7. Polyclonal serum to MBP inhibited about 55%, 50%, and 44% in E. coli O157:H7, K. pneumoniae and S. agalactiae, respectively. The invasion of K. pneumoniae and S. agalactiae was not high as polyclonal serum but was about 8% to 10% weaker than polyclonal serum. The pathogenic strains of K. pneumoniae and S. agalactiae showed less decrease in survival as shown at invasion than E. coli O157:H7 without antibody. This study provided the information that the pathogenic bacteria could be more interactive with A. culbertsoni trophozoites as a reservoir host than non-pathogenic E. coli, and the amoeba should interact with bacteria by the MBP lectin.


Sign in / Sign up

Export Citation Format

Share Document