Impact of Interventions on the Survival of Salmonella enterica I 4,[5],12:I:- in Pork

Author(s):  
Braden Wiser ◽  
S.E. Niebuhr ◽  
James Dickson

A mixed culture of different isolates of Salmonella serovar I 4,[5], 12:i:- was compared to a mixed culture of reference Salmonella serovars as well as non-pathogenic Escherichia coli surrogates.. The two groups of Salmonella were compared for their resistance to commonly used pork carcass interventions, survival in ground pork and thermal resistance in ground pork. There were no observed differences between the response of the two different groups of Salmonella serovars and the non-pathogenic E. coli surrogates within intervention type.  There were no observed differences in the recovery and survival of the two different groups of Salmonella serovars in pork which had been treated with interventions, ground and stored at 5 o C for two weeks. Finally, there were no observed differences in heat resistance between the two different groups of Salmonella serovars in ground pork which had been treated with interventions, ground and stored at 5 o C for two weeks. However, there were observed differences in heat resistance in both groups of Salmonella serovars associated with refrigerated storage. The heat resistance of both groups of Salmonella serovars decreased after refrigerated storage. The results of these experiments demonstrate that there were no observed differences between the responses of Salmonella serovar I 4,[5], 12:i:- when compared to the reference Salmonella serovars to commonly used interventions in the pork industry, and therefore do not present a unique challenge to the pork industry.

2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Aarieke E.I. de Jong ◽  
Esther D. van Asselt ◽  
Marcel H. Zwietering ◽  
Maarten J. Nauta ◽  
Rob de Jonge

The aim of this research was to determine the decimal reduction times of bacteria present on chicken fillet in boiling water. The experiments were conducted withCampylobacter jejuni, Salmonella, andEscherichia coli. Whole chicken breast fillets were inoculated with the pathogens, stored overnight (4∘C), and subsequently cooked. The surface temperature reached70∘Cwithin 30 sec and85∘Cwithin one minute. Extremely high decimal reduction times of 1.90, 1.97, and 2.20 min were obtained forC. jejuni, E. coli, andS. typhimurium, respectively. Chicken meat and refrigerated storage before cooking enlarged the heat resistance of the food borne pathogens. Additionally, a high challenge temperature or fast heating rate contributed to the level of heat resistance. The data were used to assess the probability of illness (campylobacteriosis) due to consumption of chicken fillet as a function of cooking time. The data revealed that cooking time may be far more critical than previously assumed.


2020 ◽  
Vol 21 (8) ◽  
pp. 772-776
Author(s):  
Xiao-Pei Peng ◽  
Wei Ding ◽  
Jian-Min Ma ◽  
Jie Zhang ◽  
Jian Sun ◽  
...  

Dietary proteins are linked to the pathogenic Escherichia coli (E. coli) through the intestinal tract, which is the site where both dietary proteins are metabolized and pathogenic E. coli strains play a pathogenic role. Dietary proteins are degraded by enzymes in the intestine lumen and their metabolites are transferred into enterocytes to be further metabolized. Seven diarrheagenic E. coli pathotypes have been identified, and they damage the intestinal epithelium through physical injury and effector proteins, which lead to inhibit the digestibility and absorption of dietary proteins in the intestine tract. But the increased tryptophan (Trp) content in the feed, low-protein diet or milk fractions supplementation is effective in preventing and controlling infections by pathogenic E. coli in the intestine.


Pathogens ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 467
Author(s):  
Dipak Kathayat ◽  
Dhanashree Lokesh ◽  
Sochina Ranjit ◽  
Gireesh Rajashekara

Avian pathogenic Escherichia coli (APEC) causes colibacillosis in avian species, and recent reports have suggested APEC as a potential foodborne zoonotic pathogen. Herein, we discuss the virulence and pathogenesis factors of APEC, review the zoonotic potential, provide the current status of antibiotic resistance and progress in vaccine development, and summarize the alternative control measures being investigated. In addition to the known virulence factors, several other factors including quorum sensing system, secretion systems, two-component systems, transcriptional regulators, and genes associated with metabolism also contribute to APEC pathogenesis. The clear understanding of these factors will help in developing new effective treatments. The APEC isolates (particularly belonging to ST95 and ST131 or O1, O2, and O18) have genetic similarities and commonalities in virulence genes with human uropathogenic E. coli (UPEC) and neonatal meningitis E. coli (NMEC) and abilities to cause urinary tract infections and meningitis in humans. Therefore, the zoonotic potential of APEC cannot be undervalued. APEC resistance to almost all classes of antibiotics, including carbapenems, has been already reported. There is a need for an effective APEC vaccine that can provide protection against diverse APEC serotypes. Alternative therapies, especially the virulence inhibitors, can provide a novel solution with less likelihood of developing resistance.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Pouya Reshadi ◽  
Fatemeh Heydari ◽  
Reza Ghanbarpour ◽  
Mahboube Bagheri ◽  
Maziar Jajarmi ◽  
...  

Abstract Background Transmission of antimicrobial resistant and virulent Escherichia coli (E. coli) from animal to human has been considered as a public health concern. This study aimed to determine the phylogenetic background and prevalence of diarrheagenic E. coli and antimicrobial resistance in healthy riding-horses in Iran. In this research, the genes related to six main pathotypes of E. coli were screened. Also, genotypic and phenotypic antimicrobial resistance against commonly used antibiotics were studied, then phylo-grouping was performed on all the isolates. Results Out of 65 analyzed isolates, 29.23 % (n = 19) were determined as STEC and 6.15 % (n = 4) as potential EPEC. The most prevalent antimicrobial resistance phenotypes were against amoxicillin/clavulanic acid (46.2 %) and ceftriaxone (38.5 %). blaTEM was the most detected resistance gene (98.4 %) among the isolates and 26.15 % of the E. coli isolates were determined as multi-drug resistant (MDR). Three phylo-types including B1 (76.92 %), A (13.85 %) and D (3.08 %) were detected among the isolates. Conclusions Due to the close interaction of horses and humans, these findings would place emphasis on the pathogenic and zoonotic potential of the equine strains and may help to design antimicrobial resistance stewardship programs to control the dissemination of virulent and multi-drug resistant E. coli strains in the community.


2011 ◽  
Vol 77 (14) ◽  
pp. 4949-4958 ◽  
Author(s):  
C. Sekse ◽  
M. Sunde ◽  
B.-A. Lindstedt ◽  
P. Hopp ◽  
T. Bruheim ◽  
...  

ABSTRACTA national survey ofEscherichia coliO26 in Norwegian sheep flocks was conducted, using fecal samples to determine the prevalence. In total, 491 flocks were tested, andE. coliO26 was detected in 17.9% of the flocks. One hundred forty-twoE. coliO26 isolates were examined for flagellar antigens (H typing) and four virulence genes, includingstxandeae, to identify possible Shiga toxin-producingE. coli(STEC) and enteropathogenicE. coli(EPEC). Most isolates (129 out of 142) were identified asE. coliO26:H11. They possessedeaeand may have potential as human pathogens, although only a small fraction were identified as STEC O26:H11, giving a prevalence in sheep flocks of only 0.8%. Correspondingly, the sheep flock prevalence of atypical EPEC (aEPEC) O26:H11 was surprisingly high (15.9%). The genetic relationship between theE. coliO26:H11 isolates was investigated by pulsed-field gel electrophoresis (PFGE) and multilocus variable number tandem repeat analysis (MLVA), identifying 63 distinct PFGE profiles and 22 MLVA profiles. Although the MLVA protocol was less discriminatory than PFGE and a few cases of disagreement were observed, comparison by partition mapping showed an overall good accordance between the two methods. A close relationship between a few isolates of aEPEC O26:H11 and STEC O26:H11 was identified, but all theE. coliO26:H11 isolates should be considered potentially pathogenic to humans. The present study consisted of a representative sampling of sheep flocks from all parts of Norway. This is the first large survey of sheep flocks focusing onE. coliO26 in general, including results of STEC, aEPEC, and nonpathogenic isolates.


2017 ◽  
Vol 83 (20) ◽  
Author(s):  
Ryan Mercer ◽  
Oanh Nguyen ◽  
Qixing Ou ◽  
Lynn McMullen ◽  
Michael G. Gänzle

ABSTRACT The locus of heat resistance (LHR) is a 15- to 19-kb genomic island conferring exceptional heat resistance to organisms in the family Enterobacteriaceae, including pathogenic strains of Salmonella enterica and Escherichia coli. The complement of LHR-comprising genes that is necessary for heat resistance and the stress-induced or growth-phase-induced expression of LHR-comprising genes are unknown. This study determined the contribution of the seven LHR-comprising genes yfdX1 GI, yfdX2, hdeD GI, orf11, trx GI, kefB, and psiE GI by comparing the heat resistances of E. coli strains harboring plasmid-encoded derivatives of the different LHRs in these genes. (Genes carry a subscript “GI” [genomic island] if an ortholog of the same gene is present in genomes of E. coli.) LHR-encoded heat shock proteins sHSP20, ClpKGI, and sHSPGI are not sufficient for the heat resistance phenotype; YfdX1, YfdX2, and HdeD are necessary to complement the LHR heat shock proteins and to impart a high level of resistance. Deletion of trx GI, kefB, and psiE GI from plasmid-encoded copies of the LHR did not significantly affect heat resistance. The effect of the growth phase and the NaCl concentration on expression from the putative LHR promoter p2 was determined by quantitative reverse transcription-PCR and by a plasmid-encoded p2:GFP promoter fusion. The expression levels of exponential- and stationary-phase E. coli cells were not significantly different, but the addition of 1% NaCl significantly increased LHR expression. Remarkably, LHR expression in E. coli was dependent on a chromosomal copy of evgA. In conclusion, this study improved our understanding of the genes required for exceptional heat resistance in E. coli and factors that increase their expression in food. IMPORTANCE The locus of heat resistance (LHR) is a genomic island conferring exceptional heat resistance to several foodborne pathogens. The exceptional level of heat resistance provided by the LHR questions the control of pathogens by current food processing and preparation techniques. The function of LHR-comprising genes and their regulation, however, remain largely unknown. This study defines a core complement of LHR-encoded proteins that are necessary for heat resistance and demonstrates that regulation of the LHR in E. coli requires a chromosomal copy of the gene encoding EvgA. This study provides insight into the function of a transmissible genomic island that allows otherwise heat-sensitive enteric bacteria, including pathogens, to lead a thermoduric lifestyle and thus contributes to the detection and control of heat-resistant enteric bacteria in food.


2001 ◽  
Vol 69 (2) ◽  
pp. 937-948 ◽  
Author(s):  
Lila Lalioui ◽  
Chantal Le Bouguénec

ABSTRACT We recently described a new afimbrial adhesin, AfaE-VIII, produced by animal strains associated with diarrhea and septicemia and by human isolates associated with extraintestinal infections. Here, we report that the afa-8 operon, encoding AfaE-VIII adhesin, from the human blood isolate Escherichia coli AL862 is carried by a 61-kb genomic region with characteristics typical of a pathogenicity island (PAI), including a size larger than 10 kb, the presence of an integrase-encoding gene, the insertion into a tRNA locus (pheR), and the presence of a small direct repeat at each extremity. Moreover, the G+C content of the afa-8 operon (46.4%) is lower than that of the E. coli K-12/MG1655 chromosome (50.8%). Within this PAI, designated PAI IAL862, we identified open reading frames able to code for products similar to proteins involved in sugar utilization. Four probes spanning these sequences hybridized with 74.3% of pathogenicafa-8-positive E. coli strains isolated from humans and animals, 25% of human pathogenic afa-8-negativeE. coli strains, and only 8% of fecal strains (P = 0.05), indicating that these sequences are strongly associated with the afa-8 operon and that this genetic association may define a PAI widely distributed among human and animal afa-8-positive strains. One of the distinctive features of this study is that E. coli AL862 also carries another afa-8-containing PAI (PAI IIAL862), which appeared to be similar in size and genetic organization to PAI IAL862 and was inserted into the pheV gene. We investigated the insertion sites of afa-8-containing PAI in human and bovine pathogenic E. coli strains and found that this PAI preferentially inserted into the pheV gene.


Pathogens ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 811
Author(s):  
Md. Akil Hossain ◽  
Hae-Chul Park ◽  
Sung-Won Park ◽  
Seung-Chun Park ◽  
Min-Goo Seo ◽  
...  

Pathogenic Escherichia coli (E. coli)-associated infections are becoming difficult to treat because of the rapid emergence of antibiotic-resistant strains. Novel approaches are required to prevent the progression of resistance and to extend the lifespan of existing antibiotics. This study was designed to improve the effectiveness of traditional antibiotics against E. coli using a combination of the gallic acid (GA), hamamelitannin, epicatechin gallate, epigallocatechin, and epicatechin. The fractional inhibitory concentration index (FICI) of each of the phenolic compound-antibiotic combinations against E. coli was ascertained. Considering the clinical significance and FICI, two combinations (hamamelitannin-erythromycin and GA-ampicillin) were evaluated for their impact on certain virulence factors of E. coli. Finally, the effects of hamamelitannin and GA on Rattus norvegicus (IEC-6) cell viability were investigated. The FICIs of the antibacterial combinations against E. coli were 0.281–1.008. The GA-ampicillin and hamamelitannin-erythromycin combinations more effectively prohibited the growth, biofilm viability, and swim and swarm motilities of E. coli than individual antibiotics. The concentration of hamamelitannin and GA required to reduce viability by 50% (IC50) in IEC-6 cells was 988.54 μM and 564.55 μM, correspondingly. GA-ampicillin and hamamelitannin-erythromycin may be potent combinations and promising candidates for eradicating pathogenic E. coli in humans and animals.


2020 ◽  
Vol 21 (7) ◽  
Author(s):  
Rahmad Lingga ◽  
Sri Budiarti ◽  
Iman Rusmana ◽  
Aris Tri Wahyudi

Abstract. Lingga R, Budiarti S, Rusmana I, Wahyu AT. 2020. Isolation, characterization and efficacy of lytic bacteriophages against pathogenic Escherichia coli from hospital liquid waste. Biodiversitas 21: 3234-3241. Escherichia coli is known as a pathogenic contaminant bacteria in hospital wastewater hazardous to humans and the environment. Concerns about the emergence of chlorine- and antibiotic-resistant bacteria increase the urgency to find an alternative strategy to control pathogenic bacteria in hospital wastewater. One of the alternatives is using lytic bacteriophage. This study aimed to isolate, characterize, and examine the efficacy of lytic bacteriophage against pathogenic Escherichia coli from hospital wastewater. It isolated, characterized (plaque morphology, host range, virion electron micrograph, and sensitivity to temperature, pH, and chlorine treatments), and tested the efficacy of lytic bacteriophages in controlling pathogenic E. coli isolated from hospital wastewater. Five phages were successfully obtained, all of which had clear plaques (lytic phage character). Based on host range assay, most of the phages could lyse all tested E. coli strains but not for other species. Electron micrograph photography revealed that the phages belonged to Myoviridae. The phages showed stability in high temperature, broad-ranged pH, and high concentrations of chlorine treatments. Assay on phages efficacy suggested that the phages are capable of significantly reducing the E. coli population both in sterilized and non-sterilized wastewater. The combination of phage treatment and chlorine was more effective than single phage treatment. The efficacy test revealed that phage application in wastewater had the best result seen from cocktail treatment and a combination of phage treatment and chlorine. These results suggested that the phage can be a potential candidate for disinfection purposes.


Author(s):  
A. Amiri ◽  
H. Zandi ◽  
H. Mozaffari Khosravi

Background: Electron beam irradiation is one of the effective ways to control foodborne pathogens. We evaluated the effect of electron beam irradiation on survival of Escherichia coli O157:H7 and Salmonella enterica serovar Thyphimurium in minced camel meat during refrigerated storage. Methods: The meat samples were inoculated with E. coli O157:H7 and S. enterica serovar Thyphimurium and then irradiated with doses of 0, 1, 2, 3, and 5 kGy. The samples were stored at 4±1 °C and evaluated microbiologically up to 10 days. Data were analyzed using SPSS software version 18. Results: The microbial loads of minced camel meat samples were significantly reduced (p<0.0001) with increasing the dose of irradiation. The most effective dose was 5 kGy that highly reduced S. enterica serovar Typhimurium, and completely destroyed E. coli O157:H7. However, E. coli O157:H7 was more sensitive to electron beam irradiation than S. enterica serovar Typhimurium. Conclusion: Electron beam irradiation effectively reduced the population of both E. coli O157:H7 and S. enterica serovar Typhimurium in minced camel meat in a dose dependent manner.


Sign in / Sign up

Export Citation Format

Share Document