The Numerical Simulation of Fire Spread Within a Compartment Using an Integrated Gas and Solid Phase Combustion Model

Author(s):  
F. Jia ◽  
E. R. Galea ◽  
M. K. Patel
2019 ◽  
Vol 44 (1) ◽  
pp. 35-57 ◽  
Author(s):  
Eric Guillaume ◽  
Virginie Dréan ◽  
Bertrand Girardin ◽  
Faiz Benameur ◽  
Maxime Koohkan ◽  
...  

Author(s):  
P. Fede ◽  
O. Simonin ◽  
I. Ghouila

Three dimensional unsteady numerical simulations of dense pressurized polydisperse fluidized bed have been carried out. The geometry is a medium-scale industrial pilot for ethylene polymerization. The numerical simulation have been performed with a polydisperse collision model. The consistency of the polydisperse model predictions with the monodisperse ones is shown. The results show that the pressure distribution and the mean vertical gas velocity are not modified by polydispersion of the solid phase. In contrast, the solid particle species are not identically distributed in the fluidized bed indicating the presence of particle segregation.


2021 ◽  
Author(s):  
Gabriella László ◽  
Flóra Hajdu ◽  
Rajmund Kuti

Abstract In Hungary a lot of people live in condominiums or in block of flats where fire often occurs despite of precise design and effective fire protection arrangements. This means a hazard for the people living there, for the building constructions and also for the environment. A deeper knowledge of the burning process and examining the negative effects of fire load on building constructions with scientific methods are actual questions nowadays. In order to get to know the phenomena more accurately, fire spread in a bedroom was modeled and numerical simulation was carried out, which is presented in this paper in detail. These experiences may help increasing the fire safety and preventing fires in apartments. The simulations were carried out considering the characteristics of the Hungarian architecture.


2015 ◽  
Vol 268 ◽  
pp. 272-277 ◽  
Author(s):  
Cédric Le Bot ◽  
Stéphane Vincent ◽  
Erick Meillot ◽  
Frédéric Sarret ◽  
Jean-Paul Caltagirone ◽  
...  

2021 ◽  
Vol 1 ◽  
pp. 5-14
Author(s):  
V.N. Popov ◽  

A 2D mathematical model is proposed for the modification of an iron-based alloy with refractory nanosized particles. Numerical simulation of the processes during the modification of the surface layer of the substrate metal using the energy of a laser pulse has been carried out. Within the framework of the proposed model, the processes of heating and melting of metal on a substrate covered with a layer of nanosized refractory particles penetrating into the molten metal, convective heat transfer in the melt, and solidification after the end of the pulse are considered. Metal melting is considered in the Stefan approximation, and when the melt is cooled, the model of heterogeneous nucleation and subsequent crystallization is used. The fluid flow is described by the Navier-Stokes equations in the Boussinesq approximation. The distribution of nanoparticles in the melt is modeled by moving markers. Based on the results of calculations, the mode of pulsed laser action is determined, in which a flow is formed for a homogeneous distribution of particles of the modifying substance in the presence of a surfactant in the metal. The volume of the solid phase formed around the nucleus determines the size of the grain structure in the solidified alloy. The liquidus temperature changes depending on the concentration of dissolved carbon in the melt. In the numerical simulation of the solidification of the surface layer of the metal, it was found that the conditions of nucleation and crystallization differ significantly in the volume of the melt. It is determined that the duration of nucleation in a supercooled melt is several tens of microseconds. The maximum number of crystallization centers occurs in areas where heat removal occurs most rapidly. With the growth of the solid phase in the melt and the release of the latent heat of crystallization, the value of supercooling decreases, the nucleation stops and the number of formed crystallization centers does not change further. The distribution of the dispersion of the crystal structure over the volume of the melted metal is estimated. It was found that as the melt cools, sequential-volume crystallization occurs.


2015 ◽  
Vol 768 ◽  
pp. 310-317
Author(s):  
Gang Zhen Jiao ◽  
Lei Zhang ◽  
Xiong Shi ◽  
Gui Fu

In this study, aerobic-anaerobic landfill method (AANM) is focused on as a new way to speed up landfill stabilization, inhibit landfill gas flux, and ameliorate on leachate quality. Numerical simulation model is developed to guide the air injection craftwork and study its effect on achieving above goals. On basis of work finished in last period (0~310 days), air was injected into Lysimeters A (Lys.A) at 0.5 m, and at 2.5 m in Lys.B with the same rate of 1 L/min. In Lys.C there is no air injected. In order to interview the influence by air injection manners changing, from 310 days till 360 days, air injection manners are changed from Mono-site into Double-site in Lys.A and in Lys. B it will be changed from bottom-site (2.5m) into middle-site (1.5m). In Lys.C there will be no changing. By interviewing the comparisons on simulated results in 50 days with and without air injection manners changing, it was found that air injection manners changing in Lys.A causes TOC discharging amount increase more than 6 times, but T-N and GHE resulted from landfill gas decrease 24.1% and 71 % respectively. Air injection manners changing in Lys.B resulted in discharged TOC and T-N increase 108.1 % and 53.5 % respectively, while T-N decreases 3.7 %. On basis of mechanism assumption, mathematical model was developed and according to the simulated results for 5 years, air injected at 2.5 m achieved improvements on stabilization of solid phase organic carbon and nitrogen for 34 % and 13 %, amelioration on leachate quality for 35 % and 62 % of TOC and T-N, and the restraint of GHE for 14 times compared with no air injection case.


Sign in / Sign up

Export Citation Format

Share Document