scholarly journals Comparison of Ammonium-oxidizing Bacterial Community Changes in Sludges from a Sewage and a Marine Fish Market Wastewater Treatment Plant During Enrichment Cultivation Under High Saline Conditions

2021 ◽  
Vol 43 (1) ◽  
pp. 79-87
Author(s):  
Jeongmi Kim ◽  
Jaecheul Yu ◽  
Soyeon Jeong ◽  
Yeonju Kim ◽  
Hyokwan Bae ◽  
...  

Objectives:It is important to enrich and cultivate ammonia oxidation bacteria (AOB) in order to successfully treat nitrogen in high saline wastewater using a deammonification process. Two different inocula, a sewage sludge and a fish-market wastewater sludge, were cultivated to enrich AOB and compared the changes of microbial community.<br/>Methods:A sequential batch reactor (SBR) inoculated with the sewage sludge (PN1) enriched AOB under high-strength ammonium condition (500-3,000 mg NH4<sup>+</sup>-N/L) and then the salt concentration in the medium was gradually increased up to 20 g-NaCl/L. The other SBR seeded with the fish market wastewater sludge (PN2) was operated to enrich AOB directly under 20 g NaCl/L without any acclimation step.<br/>Results and Discussion:Both PN1 and PN2 successfully showed more than 60% of the nitrite accumulation efficiency at a high saline concentration of 20 g NaCl/L. At the level of the phylum, Proteobacteria containing nitrifying microorganisms became dominant in both PN1 and PN2. However, the most dominant bacterial species in PN1 and PN2 were Nitrosomonas eutropha (60.7%) and N. halophila (20.2%), respectively.<br/>Conclusions:Although different results of the most abundant AOB were shown in both sewage sludge and fish-market wastewater sludge conditions, nitritation was successfully developed even with wastewater containing high salinity. Therefore, in this study, both sludges can be applied for inoculation to the PN process for efficiently treating wastewater with high concentration of ammonium and saline.

2014 ◽  
Vol 905 ◽  
pp. 191-194 ◽  
Author(s):  
Zbyšek Pavlík ◽  
Milena Pavlíková ◽  
Jan Fořt ◽  
Martina Záleská ◽  
Igor Medveď ◽  
...  

Chemical, physical, morphological, and mineralogical analysis of sewage sludge originating from a waste water treatment plant in Patras, Greece, is presented in the paper. The sewage sludge is firstly dried at 70°C, then oven-burned at 700°C for two hours and milled. The thermally treated material is analyzed using XRF and XRD, the particle size distribution is determined by a laser diffraction method. A potential use of sewage sludge in blended cements is investigated on the basis of the measurement of mechanical and basic physical properties of pastes containing the sludge in an amount of up to 60% of the mass of cement. Experimental results show that the thermal treatment of pre-dried sewage sludge and its grinding provides a material that can be successfully applied as a partial replacement of Portland cement. At a production of blended cements for high strength concrete, an up to 20% cement replacement level can be recommended.


2011 ◽  
Vol 1 (1) ◽  
pp. 3 ◽  
Author(s):  
Dipti Prakash Mohapatra ◽  
Satinder Kaur Brar ◽  
Rajeshwar Dayal Tyagi ◽  
Rao Y. Surampalli

The identification and quantification of bisphenol A (BPA) in wastewater (WW) and wastewater sludge (WWS) is of major interest to assess the endocrine activity of treated effluent discharged into the environment. BPA is manufactured in high quantities fro its use in adhesives, powder paints, thermal paper and paper coatings among others. Due to the daily use of these products, high concentration of BPA was observed in WW and WWS. BPA was measured in samples from Urban Community of Quebec wastewater treatment plant located in Quebec (Canada) using LC-MS/MS method. The results showed that BPA was present in significant quantities (0.07 &mu;g L&ndash;1 to 1.68 &mu;g L&ndash;1 in wastewater and 0.104 &mu;g g&ndash;1 to 0.312 &mu;g g&ndash;1 in wastewater sludge) in the wastewater treatment plant (WWTP). The treatment plant is efficient (76 %) in removal of pollutant from process stream, however, environmentally significant concentrations of 0.41 &mu;g L&ndash;1 were still present in the treated effluent. Rheological study established the partitioning of BPA within the treatment plant. This serves as the base to judge the portion of the process stream requiring more treatment for degradation of BPA and also in selection of different treatment methods. Higher BPA concentration was observed in primary and secondary sludge solids (0.36 and 0.24 &mu;g g&ndash;1, respectively) as compared to their liquid counterpart (0.27 and 0.15 &mu;g L&ndash;1, respectively) separated by centrifugation. Thus, BPA was present in significant concentrations in the WWTP and mostly partitioned in the solid fraction of sludge (Partition coefficient (Kd) for primary, secondary and mixed sludge was 0.013, 0.015 and 0.012, respectively).


2000 ◽  
Vol 41 (1) ◽  
pp. 105-113 ◽  
Author(s):  
E. Morgenroth ◽  
A. Obermayer ◽  
E. Arnold ◽  
A. Brühl ◽  
M. Wagner ◽  
...  

Sludge storage can be used as an effective control handle to adjust plant capacity to large influent variations. The sequencing batch reactor (SBR) technology is well suited for temporary sludge storage because reactors can easily be switched off individually and operated in an idle mode. In this study experimental results on the effect of long term (weeks) idle periods on nitrogen removal are presented. The SBRs were operated with idle times ranging from 6 to 20 days. Batch experiments were performed where sludge was stored without the addition of any substrate for 7 weeks. In the SBRs, repeated long-term idle phases had only a minor effect on ammonia oxidation. The nitrite oxidation process was more sensitive to long idle phases resulting in temporary nitrite accumulation in the SBRs. Quantitative gene probe analyses demonstrated that the decay of ammonia oxidizers was slower than the decay of nitrite oxidizers which in turn decayed slower than heterotrophic bacteria.


1990 ◽  
Vol 22 (7-8) ◽  
pp. 181-189 ◽  
Author(s):  
Catherine Paffoni ◽  
Michel Gousailles ◽  
Frank Rogalla ◽  
Pierre Gilles

To comply with new effluent discharge standards of 10 mg TKN/l, different upgrading methods for a highly loaded activated sludge plant were explored. As a conclusion, demonstration units were tested to assess process feasibility and performance data of an innovative technology. The Achères Treatment plant of the city of Paris is currently being extended to purify a flow of about 2 700 000 m3/d, corresponding to 8 Million population equivalents. Conventional activated sludge, loaded at about 0.6 kg BOD/kg SS d, delivers an effluent of 30 mg/l for both BOD and SS. To achieve nitrification, a considerable multiplication of basin volume and clarifier area would be required. In the densely urbanised Paris area, insufficient space is available for a such an extension. Therefore, new technology for plant upgrading was tested on industrial scale. Biological aerated filters combine aerobic degradation of pollutants with physical retention of suspended solids in one reactor. A high concentration of active biomass can be retained in the packed bed, and nitrifying bacteria can be attached to the filter media. Removal efficiency becomes thus independent of clarification and sludge settling, and ammonia oxidation can be achieved without sludge age requirements. Four parallel units were installed on the Colombes research platform, handling a total flow of 3000 m3/d. An extensive demonstration test program was carried out over a period of five years to assess the feasibility and performances of the process in line with a conventional activated sludge plant. The limits of loading to achieve different residual ammonia concentrations were studied, and the influence of temperature on biological and hydraulic parameters was verified. Backwash requirements and residual values of carbonaceous and suspended matter were explored in dependence on influent values and filtration velocity. At 13 °C, an ammonia load of 0.5 kg N/m3 d was completely oxidized. A concentration of 20 mg/l N-NH4 can thus be totally converted with an empty bed contact time of 1 hour. The Arrhenius temperature coefficient for nitrification was measured as 1.05. Biodegradable carbonaceous and suspended matter was completely removed at filtration velocities higher than 4 m/h, yielding an effluent of less than 5 mg/l for both SS and BOD. Backwash frequency was less than once per day, and a maximum of 5 % of the filter flowrate was used for backwashing.


2010 ◽  
Vol 62 (7) ◽  
pp. 1574-1579 ◽  
Author(s):  
M. Chen ◽  
S. He ◽  
Q. Yi ◽  
M. Yang

Leachate generated from landfill is becoming a great environmental challenge to China as it contains high concentration of COD, ammonium and some other substances. Nitrogen removal through the conventional nitrification-denitrification process is hampered by the low C/N ratio especially for the old age landfill sites and the high energy consumption for aeration. In this study, the combination of magnesium ammonium phosphate (MAP) precipitation and Sequencing batch reactor (SBR) was suggested as a new process for the treatment of high strength ammonium, and the effect of high concentration of Cl− after MAP precipitation because of the use of MgCl2 was investigated on SBR performance. The practical upper limit of Cl− for nitrification was found to be 12,000 mg/L, above which resulted in significant accumulation of ammonium in SBR system. It is suggested that an ammonium removal of 70% was suitable for the MAP treatment to achieve a balance between increasing the C/N ratio and avoiding detrimental effect from high concentration of Cl− in the succeeding SBR system. DGGE analysis indicated that high diversity of Ammonium oxidizing bacteria (AOB) could be maintained at a Cl− concentration of 12,000 mg/L.


2008 ◽  
Vol 57 (2) ◽  
pp. 257-264 ◽  
Author(s):  
V. Parravicini ◽  
K. Svardal ◽  
R. Hornek ◽  
H. Kroiss

The paper will report about the experiences at an Austrian large wastewater treatment plant of 720,000 population equivalents, where anaerobically digested sewage sludge is further stabilised under aerobic conditions. Enhanced stabilisation of the anaerobically digested sludge was required at the plant in order to get a permit for landfill disposal of the dewatered stabilized sludge. By implementing a post-aeration treatment (SRT ∼ 6d; 36 °C) after anaerobic digestion the organic content of the anaerobically well digested sludge can be decreased by 16%. Investigations on site showed that during digested sludge post-aeration anoxic phases for denitrification are needed to provide stable process conditions. In this way the pH value can be kept in a more favourable range for micro-organisms and concrete structures. Additionally, inhibition of the biological process due to nitrite accumulation can be avoided. By optimising the aeration/pause ratio ∼ 45% of total nitrogen in digested sludge can be removed. This significantly improves nitrogen removal efficiency at the wastewater treatment plant. NH4-removal occurs mainly through nitritation and denitritation with an efficiency of 98%. The costs/benefit analysis shows that post-aeration of digested sludge results in an increase of total annual costs for wastewater treatment of only 0.84%, corresponding to 0.19 Euro/pe/a. Result of molecular biological analyses (DGGE) indicate that all four ammonium-oxidizing bacteria species present in activated sludge can survive anaerobic digestion, but only two of them can adapt in the digested sludge post-aeration tanks. Additionally, in the post-aerated digested sludge a further ammonium-oxidizing bacteria species was identified.


2019 ◽  
pp. 115-124
Author(s):  
Piotr Kowalik ◽  
Ewa Wojciechowska

Utilization of sewage sludge is becoming one of the biggest environmental problems.One of the possible solutions is application of sludge to soil amendment. Sludge is a goodnatural fertilizer due to high concentration of organic carbon and nutrient elements (N, P).On the contrary, sewage sludge also contains heavy metals and may be contaminatedwith enteric parasites. Thus application of sludge to land could result in contamination ofsurface and ground waters and including trace metals in the food chains due tocontamination of plants grown on sludge amended soils. Hence land application of sludgeought to be carefully monitored and follow stringent regulations, which are often difficultto fulfil. However, if sludge is applied to reclamation of degraded post-industrial lands,waste deposition sites, landfills and formation of soil-like surface layer on soil-lessgrounds, the restrictions are not so stringent and easier to fulfil than in cases when cropsare grown on sludge amended soils.In the article reclamation of a phosphogypsum deposition site in Wislinka near Gdanskusing sewage sludge from a municipal wastewater treatment plant (WWTP) is discussed.Phosphogypsum deposit in Wislinka for many years has been one of the biggestenvironmental problems of the region, causing permanent complainants from localcommunities. Reclamation of the deposition site started in 1999 and has been continuedup till now. Covering of the slopes with a layer of sludge reduces dangerous wind erosionof dust and promotes plants succession.


1997 ◽  
Vol 35 (1) ◽  
pp. 233-240 ◽  
Author(s):  
E. Choi ◽  
S.-W. Oa ◽  
J.-J. Lee

An existing 2 stage aerobic nightsoil treatment plant (25m3/d capacity) was converted (modified) from a conventional continuous flow system to a single stage SBR unit for nutrient removal. 10 months study indicated organic and nutrient removal drastically improved. Heat released from decomposition of high strength influent kept liquid temperature above 15 °C for a complete nitrification even during winter period. Nutrient removal efficiencies were found to be greatly affected by pH changes due to denitrification and nitrification. Increased pH due to denitrification stimulated chemical precipitation as struvite and hydroxyapatite. In contrast, decreased pH in aerobic stage due to nitrification dissolved the previously formed precipitates resulting in increased of PO4-P. Sludge fractionation indicated phosphorus was removed about 42 % chemically and about 36 % biologically. Piping changes and timer installations were the major capital investments in this modification, but energy savings were estimated to be about 40 to 53 %. Additional savings in O&M could be expected from the improved effluent quality.


1998 ◽  
Vol 37 (12) ◽  
pp. 165-172 ◽  
Author(s):  
B. Wett ◽  
R. Rostek ◽  
W. Rauch ◽  
K. Ingerle

Dewatering of digested sludge causes significant internal nitrogen loading to a wastewater treatment plant. Due to the high concentration of nitrogen it is more effective to treat the reject-water not directly in the main purification process but to apply a separate biological treatment procedure. The intermittent operation of sludge-press facilities, the high initial pH-value of reject-water and the quick loss of alkalinity during nitrification makes a reliable control of the process necessary. A sequencing batch reactor (SBR) with an operational control based on on-line measurement of the pH-value is well suited to meet this requirement. Such a control system for discontinuous treatment of reject-water has been extensively tested and optimised in full-scale experiments since 1995. The closed loop control of the pH-value was developed to keep the bicarbonate concentration within an optimum range. At the WWTP Strass in western Austria stable nitrification rates of 50 to 60 mg NH4-N/l/h have been achieved (elimination of 200 kg nitrogen per day).


2004 ◽  
Vol 49 (5-6) ◽  
pp. 47-55 ◽  
Author(s):  
C.S. Gee ◽  
J.S. Kim

Biological ammonia-nitrogen removal utilizes two distinct processes, nitrification and denitrification. In nitrification, ammonia oxidizes to nitrite then to nitrate. In this study, elimination of nitrite oxidation to nitrate step was attempted in order to directly remove nitrite to nitrogen gas by denitrification. For this study the supernatant from an anaerobic digester was used as an ammonia source and a sequencing batch reactor (SBR) was employed. Emphasis was given to the evaluation of the operational factors affecting nitrite accumulation and the elucidation of kinetics for biological nitrification and denitrification. Accumulation of nitrite in the nitrification process was achieved by suppressing the growth of Nitrobacter, a nitrite oxidizer, by loading high concentration ammonia supernatant immediately after all ammonia in the previous loading was oxidized to nitrite. Nitrite oxidation was taking place as the solid retention time (SRT) was increased from 2.5 days to 3.0 days in a continuously aerated SBR mode with daily feeding. However, nitrite accumulation was achieved even at longer SRT of 5 days when the aeration and non-aeration periods were appropriately combined and the non-aeration period can be used for denitrification of the accumulated nitrite with a carbon source supplied.


Sign in / Sign up

Export Citation Format

Share Document