scholarly journals Design of Low Power & Area Efficient of 8-Bit Comparator using GDI Technique

Author(s):  
Pyasa Dileep and A Satyanarayana B Sangeeth Kumar,

In this paper we are design a circuit based on data selector and distributor networks in which we will not realize the circuit based upon the expressions but off course the circuit which have designed will have internally some expression. In the recent trends the need for low power and less on-chip area is on high note for the portable devices. In this project we want to focus on the design constraints of VLSI. Innovative design of 8-Bit GDI based Comparator will be proposed and implemented. Optimization depends on selection of GDI Cell as well as selection of primary inputs to the terminals of GDI cell. 8-Bit GDI based Comparator will be designed and simulated using Tanner EDATool. Comparator has three main outputs where it can compare the weight of two words and generates three functions. GDI has the advantage of low power consumption because the total number of logic devices needed willbe less and it can also operate with high speed due to affective realization of logic using minimal hardware. Comparator circuits is designed using tanner tools and also observe the simulation results in H-SPICE attaining low power and less delay.

Author(s):  
A. Ferrerón Labari ◽  
D. Suárez Gracia ◽  
V. Viñals Yúfera

In the last years, embedded systems have evolved so that they offer capabilities we could only find before in high performance systems. Portable devices already have multiprocessors on-chip (such as PowerPC 476FP or ARM Cortex A9 MP), usually multi-threaded, and a powerful multi-level cache memory hierarchy on-chip. As most of these systems are battery-powered, the power consumption becomes a critical issue. Achieving high performance and low power consumption is a high complexity challenge where some proposals have been already made. Suarez et al. proposed a new cache hierarchy on-chip, the LP-NUCA (Low Power NUCA), which is able to reduce the access latency taking advantage of NUCA (Non-Uniform Cache Architectures) properties. The key points are decoupling the functionality, and utilizing three specialized networks on-chip. This structure has been proved to be efficient for data hierarchies, achieving a good performance and reducing the energy consumption. On the other hand, instruction caches have different requirements and characteristics than data caches, contradicting the low-power embedded systems requirements, especially in SMT (simultaneous multi-threading) environments. We want to study the benefits of utilizing small tiled caches for the instruction hierarchy, so we propose a new design, ID-LP-NUCAs. Thus, we need to re-evaluate completely our previous design in terms of structure design, interconnection networks (including topologies, flow control and routing), content management (with special interest in hardware/software content allocation policies), and structure sharing. In CMP environments (chip multiprocessors) with parallel workloads, coherence plays an important role, and must be taken into consideration.


Nanophotonics ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 937-945
Author(s):  
Ruihuan Zhang ◽  
Yu He ◽  
Yong Zhang ◽  
Shaohua An ◽  
Qingming Zhu ◽  
...  

AbstractUltracompact and low-power-consumption optical switches are desired for high-performance telecommunication networks and data centers. Here, we demonstrate an on-chip power-efficient 2 × 2 thermo-optic switch unit by using a suspended photonic crystal nanobeam structure. A submilliwatt switching power of 0.15 mW is obtained with a tuning efficiency of 7.71 nm/mW in a compact footprint of 60 μm × 16 μm. The bandwidth of the switch is properly designed for a four-level pulse amplitude modulation signal with a 124 Gb/s raw data rate. To the best of our knowledge, the proposed switch is the most power-efficient resonator-based thermo-optic switch unit with the highest tuning efficiency and data ever reported.


Author(s):  
Prashant Singh ◽  
Jae-sun Seo ◽  
David Blaauw ◽  
Dennis Sylvester

2013 ◽  
Vol 22 (08) ◽  
pp. 1350068
Author(s):  
XINSHENG WANG ◽  
YIZHE HU ◽  
LIANG HAN ◽  
JINGHU LI ◽  
CHENXU WANG ◽  
...  

Process and supply variations all have a large influence on current-mode signaling (CMS) circuits, limiting their application on the fields of high-speed low power communication over long on-chip interconnects. A variation-insensitive CMS scheme (CMS-Bias) was offered, employing a particular bias circuit to compensate the effects of variations, and was robust enough against inter-die and intra-die variations. In this paper, we studied in detail the principle of variation tolerance of the CMS circuit and proposed a more suitable bias circuit for it. The CMS-Bias with the proposed bias circuit (CMS-Proposed) can acquire the same variation tolerance but consume less energy, compared with CMS-Bias with the original bias circuit (CMS-Original). Both the CMS schemes were fabricated in 180 nm CMOS technology. Simulation and measured results indicate that the two CMS interconnect circuits have the similar signal propagation delay when driving signal over a 10 mm line, but the CMS-Proposed offers about 9% reduction in energy/bit and 7.2% reduction in energy-delay-product (EDP) over the CMS-Original. Simulation results show that the two CMS schemes only change about 5% in delay when suffering intra-die variations, and have the same robustness against inter-die variations. Both simulation and measurements all show that the proposed bias circuits, employing self-biasing structure, contribute to robustness against supply variations to some extent. Jitter analysis presents the two CMS schemes have the same noise performance.


2020 ◽  
Vol 77 ◽  
pp. 04003
Author(s):  
Mark Ogbodo ◽  
Khanh Dang ◽  
Fukuchi Tomohide ◽  
Abderazek Abdallah

Neuromorphic computing tries to model in hardware the biological brain which is adept at operating in a rapid, real-time, parallel, low power, adaptive and fault-tolerant manner within a volume of 2 liters. Leveraging the event driven nature of Spiking Neural Network (SNN), neuromorphic systems have been able to demonstrate low power consumption by power gating sections of the network not driven by an event at any point in time. However, further exploration in this field towards the building of edge application friendly agents and efficient scalable neuromorphic systems with large number of synapses necessitates the building of small-sized low power spiking neuron processor core with efficient neuro-coding scheme and fault tolerance. This paper presents a spiking neuron processor core suitable for an event-driven Three-Dimensional Network on Chip (3D-NoC) SNN based neuromorphic systems. The spiking neuron Processor core houses an array of leaky integrate and fire (LIF) neurons, and utilizes a crossbar memory in modelling the synapses, all within a chip area of 0.12mm2 and was able to achieves an accuracy of 95.15% on MNIST dataset inference.


2013 ◽  
Vol 9 (3) ◽  
pp. 322-331 ◽  
Author(s):  
K. Swaminathan ◽  
G. Lakshminarayanan ◽  
Seok-Bum Ko

1983 ◽  
Vol 18 (5) ◽  
pp. 554-561 ◽  
Author(s):  
M.W. Knecht ◽  
M.H. Manley ◽  
D.C. Perasso ◽  
J.F. Thomas ◽  
P. Keshtbod ◽  
...  

2012 ◽  
Vol 4 (3) ◽  
pp. 275-282 ◽  
Author(s):  
Behnam Sedighi ◽  
Mahdi Khafaji ◽  
Johann Christoph Scheytt

We present a method to realize a low-power and high-speed digital-to-analog converter (DAC) for system-on-chip applications. The new method is a combination of binary-weighted current cells and R-2R ladder and is specially suited for modern BiCMOS technologies. A prototype 5 GS/s DAC is implemented in 0.13 μm SiGe BiCMOS technology. The DAC dissipates 26 mW and provides an SFDR higher than 48 dB for output frequencies up to 1 GHz.


Growing demand for portable devices and fast increases in complexity of chip cause power dissipation is an important parameter. Power consumption and dissipation or generations of more heat possess a restriction in the direction of the integration of more transistors. Several methods have been proposed to reduce power dissipation from system level to device level. Subthreshold circuits are widely used in more advanced applications due to ultra low-power consumption. The present work targets on construction of linear feedback shift registers (LFSR) in weak inversion region and their performance observed in terms of parameters like power delay product (PDP). In CMOS circuits subthreshold region of operation allows a low-power for ample utilizations but this advantage get with the penalty of flat speed. For the entrenched and high speed applications, improving the speed of subthreshold designs is essential. To enhance this, operate the devices at maximum current over capacitance. LFSR architectures build with various types of D flip flop and XOR gate circuits are analyzed. Circuit level Simulation is carried out using 130 nm technologies.


Sign in / Sign up

Export Citation Format

Share Document