scholarly journals Detection of Novel Corona Virus Using Machine Learning and Image Recognition

Author(s):  
Dhruv Garg and Saurabh Gautam

In the recent past whole of the world has come to a standstill due to a novel airborne virus. The airborne nature of this disease has made it highly contagious which has led to a great number of people being infected very fast. This requires a new method of testing that is faster and more precise. Machine Learning has allowed us to develop sophisticated self-learning models that can learn from data being fed and decide on entirely new options. In the past we have used different Machine Learning algorithm to make models on different biomedical dataset to detect various kind of acute or chronic diseases. Here we have developed a model that successfully detects severe cases of Novel corona virus affected person with great precision.

2021 ◽  
Author(s):  
Praveeen Anandhanathan ◽  
Priyanka Gopalan

Abstract Coronavirus disease (COVID-19) is spreading across the world. Since at first it has appeared in Wuhan, China in December 2019, it has become a serious issue across the globe. There are no accurate resources to predict and find the disease. So, by knowing the past patients’ records, it could guide the clinicians to fight against the pandemic. Therefore, for the prediction of healthiness from symptoms Machine learning techniques can be implemented. From this we are going to analyse only the symptoms which occurs in every patient. These predictions can help clinicians in the easier manner to cure the patients. Already for prediction of many of the diseases, techniques like SVM (Support vector Machine), Fuzzy k-Means Clustering, Decision Tree algorithm, Random Forest Method, ANN (Artificial Neural Network), KNN (k-Nearest Neighbour), Naïve Bayes, Linear Regression model are used. As we haven’t faced this disease before, we can’t say which technique will give the maximum accuracy. So, we are going to provide an efficient result by comparing all the such algorithms in RStudio.


Author(s):  
Kunal Parikh ◽  
Tanvi Makadia ◽  
Harshil Patel

Dengue is unquestionably one of the biggest health concerns in India and for many other developing countries. Unfortunately, many people have lost their lives because of it. Every year, approximately 390 million dengue infections occur around the world among which 500,000 people are seriously infected and 25,000 people have died annually. Many factors could cause dengue such as temperature, humidity, precipitation, inadequate public health, and many others. In this paper, we are proposing a method to perform predictive analytics on dengue’s dataset using KNN: a machine-learning algorithm. This analysis would help in the prediction of future cases and we could save the lives of many.


Entropy ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 300
Author(s):  
Mark Lokanan ◽  
Susan Liu

Protecting financial consumers from investment fraud has been a recurring problem in Canada. The purpose of this paper is to predict the demographic characteristics of investors who are likely to be victims of investment fraud. Data for this paper came from the Investment Industry Regulatory Organization of Canada’s (IIROC) database between January of 2009 and December of 2019. In total, 4575 investors were coded as victims of investment fraud. The study employed a machine-learning algorithm to predict the probability of fraud victimization. The machine learning model deployed in this paper predicted the typical demographic profile of fraud victims as investors who classify as female, have poor financial knowledge, know the advisor from the past, and are retired. Investors who are characterized as having limited financial literacy but a long-time relationship with their advisor have reduced probabilities of being victimized. However, male investors with low or moderate-level investment knowledge were more likely to be preyed upon by their investment advisors. While not statistically significant, older adults, in general, are at greater risk of being victimized. The findings from this paper can be used by Canadian self-regulatory organizations and securities commissions to inform their investors’ protection mandates.


2021 ◽  
Author(s):  
jorge cabrera Alvargonzalez ◽  
Ana Larranaga Janeiro ◽  
Sonia Perez ◽  
Javier Martinez Torres ◽  
Lucia martinez lamas ◽  
...  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been and remains one of the major challenges humanity has faced thus far. Over the past few months, large amounts of information have been collected that are only now beginning to be assimilated. In the present work, the existence of residual information in the massive numbers of rRT-PCRs that tested positive out of the almost half a million tests that were performed during the pandemic is investigated. This residual information is believed to be highly related to a pattern in the number of cycles that are necessary to detect positive samples as such. Thus, a database of more than 20,000 positive samples was collected, and two supervised classification algorithms (a support vector machine and a neural network) were trained to temporally locate each sample based solely and exclusively on the number of cycles determined in the rRT-PCR of each individual. Finally, the results obtained from the classification show how the appearance of each wave is coincident with the surge of each of the variants present in the region of Galicia (Spain) during the development of the SARS-CoV-2 pandemic and clearly identified with the classification algorithm.


Author(s):  
Sercan Demirci ◽  
Durmuş Özkan Şahin ◽  
Ibrahim Halil Toprak

Skin cancer, which is one of the most common types of cancer in the world, is a malignant growth seen on the skin due to various reasons. There was an increase in the number of the cases of skin cancer nearly 200% between 2004-2009. Since the ozone layer is depleting, harmful rays reflected from the sun cannot be filtered. In this case, the likelihood of skin cancer will increase over the years and pose more risks for human beings. Early diagnosis is very significant as in all types of cancers. In this study, a mobile application is developed in order to detect whether the skin spots photographed by using the machine learning technique for early diagnosis have a suspicion of skin cancer. Thus, an auxiliary decision support system is developed that can be used both by the clinicians and individuals. For cases that are predicted to have a risk higher than a certain rate by the machine learning algorithm, early diagnosis could be initiated for the patients by consulting a physician when the case is considered to have a higher risk by machine learning algorithm.


2017 ◽  
Vol 10 (13) ◽  
pp. 284
Author(s):  
Ankush Rai ◽  
Jagadeesh Kannan R

In the past decade development of machine learning algorithm for network settings has witnessed little advancements owing to slow development of technologies for improving bandwidth and latency.  In this study we present a novel online learning algorithm for network based computational operations in image processing setting


2020 ◽  
Vol 44 (1) ◽  
pp. 231-269
Author(s):  
Rong Chen

Abstract Plural marking reaches most corners of languages. When a noun occurs with another linguistic element, which is called associate in this paper, plural marking on the two-component structure has four logically possible patterns: doubly unmarked, noun-marked, associate-marked and doubly marked. These four patterns do not distribute homogeneously in the world’s languages, because they are motivated by two competing motivations iconicity and economy. Some patterns are preferred over others, and this preference is consistently found in languages across the world. In other words, there exists a universal distribution of the four plural marking patterns. Furthermore, holding the view that plural marking on associates expresses plurality of nouns, I propose a hypothetical universal which uses the number of pluralized associates to predict plural marking on nouns. A data set collected from a sample of 100 languages is used to test the hypothetical universal, by employing the machine learning algorithm logistic regression.


2020 ◽  
pp. 10.1212/CPJ.0000000000000882 ◽  
Author(s):  
Christopher G. Tarolli ◽  
Julia M. Biernot ◽  
Peter D. Creigh ◽  
Emile Moukheiber ◽  
Rachel Marie E. Salas ◽  
...  

Neurologists around the country and the world are rapidly transitioning from traditional in-person visits to remote neurologic care because of the corona virus disease 2019 pandemic. Given calls and mandates for social distancing, most clinics have shuttered or are only conducting urgent and emergent visits. As a result, many neurologists are turning to teleneurology with real-time remote video-based visits with patients, to provide ongoing care. Although telemedicine utilization and comfort has grown for many acute and ambulatory neurologic conditions in the past decade, remote visits and workflows remain foreign to many patients and neurologists. Here, we provide a practical framework for clinicians to orient themselves to the remote neurologic assessment, offering suggestions for clinician and patient preparation prior to the visit; recommendations to manage common challenges with remote neurologic care; modifications to the neurologic exam for remote performance, including subspecialty-specific considerations for a variety of neurologic conditions; and a discussion of the key limitations of remote visits. These recommendations are intended to serve as a guide for immediate implementation as neurologists transition to remote care. These will be relevant not only for practice today, but also for the likely sustained expansion of teleneurology following the pandemic.


2020 ◽  
Vol 2020 (2) ◽  
pp. 108-120
Author(s):  
V Sukharev ◽  
A. Nikitin ◽  
A Zavaliy

Currently, there is an unprecedented struggle among epidemiologists to create reliable means of protection against the new deadly corona-virus disease "COVID-19"that has engulfed human civilization. The situation is complicated by the lack of a clear understanding of the physical nature of viral epidemics and pandemics. The article based on the "space wave electromagnetic resonance concept" developed by the authors shows that the most likely cause of the corona virus pandemic, as well as most of the major pandemics of the past, were powerful electromagnetic and gravitational disturbances coming from Space.


Machine learning in recent years has become an integral part of our day to day life and the ease of use has improved a lot in the past decade.There are various ways to make the model to work in smaller devices.A modest method to advance any machine learning algorithm to work in smaller devices is to provide the output of large complex models as input to smaller models which can be easily deployed into mobile phones .We provided a framework where the large models can even learn the domain knowledge which is integrated as first-order logic rules and explicitly includes that knowledge into the smaller model by simultaneously training of both the models.This can be achieved by transfer learning where the knowledge learned by one model can be used to teach the other model.Domain knowledge integration is the most critical part here and it can be done by using some of the constraint principles where the scope of the data is reduced based upon the constraints mentioned. One of the best representation of domain knowledge is logic rules where the knowledge is encoded as predicates.This framework provides a way to integrate human knowledge into deep neural networks that can be easily deployed into any devices.


Sign in / Sign up

Export Citation Format

Share Document