A Low Complex Modified Grey Wolf Optimization Model for OFDM Peak Power Reduction

2021 ◽  
Vol 36 (3) ◽  
pp. 259-265
Author(s):  
Radhakrishnan Suriavel Rao ◽  
Ramakrishnan Menaka ◽  
Rajan Alexciyaa Winslet

Orthogonal frequency division multiplexing (OFDM) or multicarrier modulation is an essential signal processing technique in new generation wireless gadgets owing to its potential to support fast and spectrally efficient transmission. One of the major limitations of OFDM systems is the peak-to-average power ratio (PAPR) of transmit data. In this article, a novel meta heuristic algorithm called modified grey wolf optimizer is used to boost the computing performance of subcarrier phase factor search in the undisputed partial transmit sequence method. The proposed modified grey wolf optimizer (mGWO) has a balancing between exploration and exploitation phases while searching for peak power carriers and brings out a nearly optimal performance but with less number of iterations. The objective is to propose low complex computing algorithm without compromising the output quality. The simulation results of proposed mGWO-PTS model assure improvements around 20 to 25 percent from that of the comparative counterparts such as GWO-PTS, PSO-PTS, and etc.

2008 ◽  
Vol 2008 ◽  
pp. 1-9 ◽  
Author(s):  
Ashraf A. Eltholth ◽  
Adel R. Mekhail ◽  
A. Elshirbini ◽  
M. I. Dessouki ◽  
A. I. Abdelfattah

The high peak to average power ration (PAR) levels of orthogonal frequency division multiplexing (OFDM) signals attract the attention of many researchers during the past decade. Existing approaches that attack this PAR issue are abundant, but no systematic framework or comparison between them exists to date. They sometimes even differ in the problem definition itself and consequently in the basic approach to follow. In this paper, we propose a new trend in mitigating the peak power problem in OFDM system based on modeling the effects of clipping and amplifier nonlinearities in an OFDM system. We showed that the distortion due to these effects is highly related to the dynamic range itself rather than the clipping level or the saturation level of the nonlinear amplifier, and thus we propose two criteria to reduce the dynamic range of the OFDM, namely, the use of MSK modulation and the use of Hadamard transform. Computer simulations of the OFDM system using Matlab are completely matched with the deduced model in terms of OFDM signal quality metrics such as BER, ACPR, and EVM. Also simulation results show that even the reduction of PAR using the two proposed criteria is not significat, and the reduction in the amount of distortion due to HPA is truley delightful.


Author(s):  
PRITANJALI KUMARI ◽  
US TRIAR

Orthogonal Frequency Division Multiplexing (OFDM), widely used in digital wireless communication, has a major drawback of high Peak to Average Power Ratio (PAPR). A reduced complexity partial transmit sequence (PTS) scheme has been proposed to solve high peak to average power ratio (PAPR) of orthogonal frequency division multiplexing (OFDM) system. In the proposed PTS scheme, a function is generated by summing the power of time domain samples at time ‘n’ in each sub blocks, known as “Hn”.Only those samples, having Hn greater than or equal to a preset threshold value (αT) are used for peak power calculation during the process of selecting a candidate signal with the lowest PAPR for transmission. As compared to conventional PTS scheme, the proposed scheme achieves almost the same PAPR reduction performance with much lower computational complexity.


2018 ◽  
Vol 0 (0) ◽  
Author(s):  
Saruti Gupta ◽  
Ashish Goel

Abstract The main drawback in the performance of the Orthogonal Frequency Division Multiplexing (OFDM) system is the higher Peak-to-Average Power Ratio (PAPR) of the OFDM signals at the transmitter side. Companding is a well-known technique useful for reducing PAPR in the OFDM signal. This paper proposes a new nonlinear companding scheme that transforms the magnitude of Rayleigh distributed OFDM signal of specific degree into trapezoidal distribution. Additional design parameter is used in the proposed companding scheme to make the companding function more flexible. In the designed OFDM system the companding function has more degree of freedom which improves the PAPR and bit error rate (BER) parameters of the designed system. It has been demonstrated that the designed companding scheme provides more flexibility to accomplish an optimum trade-off between the performance parameters PAPR and BER of the designed OFDM system.


2017 ◽  
Vol 1 (2) ◽  
pp. 18
Author(s):  
N. M. A. E. D. Wirastuti ◽  
N. Pramaita ◽  
I M. A. Suyadnya ◽  
D. C. Khrisne

This paper investigates clipping and filtering techniques in reducing peak average power ratio (PAPR) of Orthogonal Frequency Division Multiplexing (OFDM) system. The concept of OFDM is to split a high speed serial data into parallel data at a lower speed, then the parallel data carried by mutually orthogonal subcarriers. The high of PAPR is one of disadvantages of OFDM system. The high PAPR can damages the form of OFDM and reduces its performance. The purpose of this study is to reduce PAPR using simulation. OFDM was simulated with and without clipping filtering then compared.  The methods used to reduce PAPR was clipping and filtering technique. Clipping and filtering technique operates by clipping the output of inverse Fourier transform that exceed the threshold. Graphics PAPR vs. CCDF was used to evaluate the performance of OFDM systems. PAPR for OFDM system using Fourier transform when CCDF = 10-3 is 11,2 dB, with classical clipping PAPR was 4,1 dB and PAPR 4,6 dB when with deep clipping.


2015 ◽  
Vol 43 ◽  
pp. 39-49
Author(s):  
Md. Ibrahim Khalil ◽  
Sabbir Ahmed

Selected Mapping (SLM) and Partial Transmit Sequence (PTS) are two very well-known Peak-to-average Power Ratio (PAPR) reduction techniques for Orthogonal Frequency Division Multiplexing (OFDM) systems. Both these schemes show good PAPR reduction capabilities. However, for any PAPR reduction technique, the nature of spectral occupancy and the associated computational complexity also need to be taken into account when the overall performance is considered. In this paper, our goal is to perform a comparative performance analysis of SLM and PTS techniques by considering these three parameters, i.e. PAPR reduction, computational overhead and spectral compactness. For this, we at first look for the optimum values in terms of number of sequences in SLM and no. of sub-blocks in PTS. And then based on this finding, we perform performance analysis. Our finding shows that, PTS outperforms SLM when compared on the parameters mentioned above. Finally, to explore the feasibility of further improvement, we apply Walsh-Hadamard Transform to PTS scheme and show that it further reduces PAPR and improves spectral compactness.


Information ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 190 ◽  
Author(s):  
Brahim Bakkas ◽  
Reda Benkhouya ◽  
Idriss Chana ◽  
Hussain Ben-Azza

Orthogonal frequency division multiplexing (OFDM) is the key technology used in high-speed communication systems. One of the major drawbacks of OFDM systems is the high peak-to-average power ratio (PAPR) of the transmitted signal. The transmitted signal with a high PAPR requires a very large linear range of the Power Amplifier (PA) on the transmitter side. In this paper, we propose and study a new clipping method named Palm Clipping (Palm date leaf) based on hyperbolic cosine. To evaluate and analyze its performance in terms of the PAPR and Bit Error Rate (BER), we performed some computer simulations by varying the Clipping Ratio (CR) and modulation schemes. The obtained results show that it is possible to achieve a gain of between 7 and 9 dB in terms of PAPR reduction depending on the type of modulation. In addition, comparison with several techniques in terms of PAPR and BER shows that our method is a strong alternative that can be adopted as a PAPR reduction technique for OFDM-based communication systems.


Author(s):  
Tahreer Mahmood ◽  
Seshadri Mohan

Multiple-input multiple-output technology together with orthogonal frequency division multiplexing (MIMO-OFDM) is an effective technique to combat multi-channel fading and to improve bandwidth efficiency. Simultaneously, it also increases the system's ability to provide reliable transmission. However, the main disadvantage of OFDM is the high peak-to-average-power ratio (PAPR), which, if not mitigated, will negatively impact practical applications. The high PAPR increases complexity and Bit Error Rate. In this research, the authors investigate the factors influencing the PAPR performance of both OFDM and MIMO-OFDM systems. The objective of this research is to make researchers in this field become familiar with this problem as well as to impart an understanding of the factors that influence PAPR. In this study, the authors classify the factors that impact PAPR into modulation schemes and a number of sub-carriers. These parameters influence the PAPR performance have been analyzed and simulated by using MATLAB. It is observed that the numbers of sub-carriers have a great effect on the PAPR performance. However, modulation schemes can have a small effect on PAPR performance.


2016 ◽  
Vol 14 (1) ◽  
pp. 705-722 ◽  
Author(s):  
Sotirios K. Goudos

AbstractA major drawback of orthogonal frequency division multiplexing (OFDM) signals is the high value of peak to average power ratio (PAPR). Partial transmit sequences (PTS) is a popular PAPR reduction method with good PAPR reduction performance, but its search complexity is high. In this paper, in order to reduce PTS search complexity we propose a new technique based on biogeography-based optimization (BBO). More specifically, we present a new Generalized Oppositional Biogeography Based Optimization (GOBBO) algorithm which is enhanced with Oppositional Based Learning (OBL) techniques. We apply both the original BBO and the new Generalized Oppositional BBO (GOBBO) to the PTS problem. The GOBBO-PTS method is compared with other PTS schemes for PAPR reduction found in the literature. The simulation results show that GOBBO and BBO are in general highly efficient in producing significant PAPR reduction and reducing the PTS search complexity.


2014 ◽  
Vol 65 (5) ◽  
pp. 289-293 ◽  
Author(s):  
Sabhyata Uppal ◽  
Sanjay Sharma ◽  
Hardeep Singh

Abstract Orthogonal frequency division multiplexing (OFDM) is a common technique in multi carrier communications. One of the major issues in developing OFDM is the high peak to average power ratio (PAPR). Golay sequences have been introduced to construct 16-QAM and 256-QAM (quadrature amplitude modulation) code for the orthogonal frequency division multiplexing (OFDM), reducing the peak-to-average power ratio. In this paper we have considered the use of coding to reduce the peakto- average power ratio (PAPR) for orthogonal frequency division multiplexing (OFDM) systems. By using QPSK Golay sequences, 16 and 256 QAM sequences with low PAPR are generated


2020 ◽  
Vol 9 (6) ◽  
pp. 2371-2379
Author(s):  
Ali Hussein Fadel ◽  
Hasanain H. Razzaq ◽  
Salama A. Mostafa

The partial transmit sequences (PTS) is regarded as a promising scheme for inhibiting ‎the high peak-to-average power ratio (PAPR) problem in the orthogonal frequency division ‎multiplexing (OFDM) systems. The PTS scheme relies on partitioning the ‎data sequence into subsets and weighting these subsets by a group of the phase rotation ‎factors. Although the PTS can efficiently reduce the high PAPR value, a great ‎computational complexity (CC) level restricts the utilization of the PTS scheme in practical ‎applications. In PTS, there are three common types of segmentation schemes; ‎interleaving (IL-PTS), pseudo-random (PR-PTS), and adjacent (Ad-PTS) schemes. This ‎paper presents a new algorithm named hybrid pseudo-random and interleaving cosine wave shape ‎‎(H-PRC-PTS) by combining the PR-PTS scheme and the symmetrical ‎interleaving cosine wave shape (S-IL-C-PTS) scheme which was proposed in our previous ‎work. The results indicate that the suggested algorithms can ‎diminish the PAPR value like the PR-PTS scheme, whereas the CC level is reduced significantly.


Sign in / Sign up

Export Citation Format

Share Document