scholarly journals Effect of Lyophilized Growth Factors (LGF) Derived from Equine Platelets on Experimentally Induced Skin Wound Healing in Mongrel Dogs

2021 ◽  
Vol 10 (2) ◽  
pp. 75-82

Lyophilized growth factor (LGF) is a novel advanced platelets rich protein growth factor. It has been successfully applied in various fields of regenerative medicine including management of chronic and non-healing wounds and ulcers. Our study aimed to evaluate the effect of subcutaneous infiltration of equine platelets derived lyophilized growth factors on healing of induced full thickness skin wound in dogs. Four healthy mongrel dogs of different ages were used in the current work. Three bilateral critical sized skin wounds were done on the back of each dog. After 24 hours, the right-side wounds were injected in 4 cardinal points around each wound by Saline/lidocaine (control wounds) and simultaneously reconstituted LGF was subcutaneously injected around the left side wounds (LGF treated wounds). Wound contraction was monitored physically and histopathologically. The expression of TGF-β1 and NF-κB was evaluated in wound specimens of both groups. A significant reduction in wound size was recorded in LGF treated group compared to saline treated group. The histopathological scoring of the healing progress revealed significant increase in the degree of re-epithelization bridging the wound edges and collagen deposition in LGF-treated wounds compared to control non-treated wounds along the experimental periods. Additionally, the expression of TGF-β1 and NF-κB showed significant elevation in LGF-treated wounds compared with their expression in control wounds. In conclusion, LGF therapy could be a superior candidate as a regenerative therapy in skin wounds that can positively impact healing process of the cutaneous wounds.

2013 ◽  
Vol 24 (4) ◽  
pp. 299-307 ◽  
Author(s):  
Fernando Antonio Mauad de Abreu ◽  
Cynthia Lopes Ferreira ◽  
Gerluza Aparecida Borges Silva ◽  
Camila de Oliveira Paulo ◽  
Melissa Nunes Miziara ◽  
...  

This work evaluated the bone-forming potential of the platelet-derived growth factor isoform BB (PDGF-BB), insulin-like growth factor I (IGF-I), and mixed PDGF-BB/IGF-I delivered in liposomes compared with phosphate buffered saline (PBS), in the healing process of rat tooth sockets. One hundred and twelve Wistar rats were randomized into 7 groups of 16 animals each and were evaluated at 3, 7, 14 and 21 days after extraction of the maxillary second molars. The left sockets were treated with PBS (P), empty liposome (L), IGF-I in PBS (IP), IGF-I in liposome (IL), PDGF-BB in PBS (PDP), PDGF-BB in liposome (PDL) and both growth factors (GFs) together within liposomes (PDIL). The right sockets were filled with blood clot (BC). Histological and histomorphometric analyses were used to evaluate the formation of new bone and blood vessels. Immunohistochemistry was performed to evaluate the expression of osteocalcin and vascular endothelial growth factor (VEGF) during bone repair. Data were tested statistically using a Tukey's test according to a Dunn's analysis and Mann-Whitney U test followed by Kruskal-Wallis one-way analysis. Results were considered significant when p<0.05. A significantly higher percentage of bone trabeculae and a higher number of blood vessels were observed in the IL, PDL and PDIL groups (p<0.05). However, these GF-liposome groups had statistically similar results. Immunohistochemical assays first detected osteocalcin and VEGF expression at 3 days followed by a peak at 7 days. Lower immunoreactivity levels were observed in the BC, L, P, IP and PDP groups compared with the IL, PDL and PDIL groups (p<0.05). The results suggest that GFs carried by liposomes, either in isolated or mixed forms, enhanced the healing process in rat tooth sockets. The differential expression of the osteogenic markers VEGF and osteocalcin in the early phases of bone healing support these findings.


F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 787 ◽  
Author(s):  
Sanna-Maria Karppinen ◽  
Ritva Heljasvaara ◽  
Donald Gullberg ◽  
Kaisa Tasanen ◽  
Taina Pihlajaniemi

The efficient healing of skin wounds is crucial for securing the vital barrier function of the skin, but pathological wound healing and scar formation are major medical problems causing both physiological and psychological challenges for patients. A number of tightly coordinated regenerative responses, including haemostasis, the migration of various cell types into the wound, inflammation, angiogenesis, and the formation of the extracellular matrix, are involved in the healing process. In this article, we summarise the central mechanisms and processes in excessive scarring and acute wound healing, which can lead to the formation of keloids or hypertrophic scars, the two types of fibrotic scars caused by burns or other traumas resulting in significant functional or aesthetic disadvantages. In addition, we discuss recent developments related to the functions of activated fibroblasts, the extracellular matrix and mechanical forces in the wound environment as well as the mechanisms of scarless wound healing. Understanding the different mechanisms of wound healing is pivotal for developing new therapies to prevent the fibrotic scarring of large skin wounds.


2017 ◽  
Vol 26 (8) ◽  
pp. 1331-1340 ◽  
Author(s):  
Xionglin Chen ◽  
Min Zhang ◽  
Shixuan Chen ◽  
Xueer Wang ◽  
Zhihui Tian ◽  
...  

Skin wound healing is a complicated process that involves a variety of cells and cytokines. Fibroblasts play an important role in this process and participate in transformation into myofibroblasts, the synthesis of extracellular matrix (ECM) and fibers, and the secretion of a variety of growth factors. This study assessed the effects of peptide Ser-Ile-Lys-Val-Ala-Val (SIKVAV)--modified chitosan hydrogels on skin wound healing. We investigated the capability of peptide SIKVAV to promote cell proliferation and migration, the synthesis of collagen, and the secretion of a variety of growth factors using fibroblasts in vitro. We also treated skin wounds established in mice using peptide SIKVAV-modified chitosan hydrogels. Hematoxylin and eosin staining showed that peptide-modified chitosan hydrogels enhanced the reepithelialization of wounds compared with negative and positive controls. Masson’s trichrome staining demonstrated that more collagen fibers were deposited in the wounds treated with peptide-modified chitosan hydrogels compared with the negative and positive controls. Immunohistochemistry revealed that the peptide-modified chitosan hydrogels promoted angiogenesis in the skin wound. Taken together, these results suggest that peptide SIKVAV-modified chitosan hydrogels may be useful in wound dressing and the treatment of skin wounds.


2012 ◽  
Vol 302 (8) ◽  
pp. C1213-C1225 ◽  
Author(s):  
Chen Zhang ◽  
Chek Kun Tan ◽  
Craig McFarlane ◽  
Mridula Sharma ◽  
Nguan Soon Tan ◽  
...  

Myostatin (Mstn) is a secreted growth and differentiation factor that belongs to the transforming growth factor-β (TGF-β) superfamily. Mstn has been well characterized as a regulator of myogenesis and has been shown to play a critical role in postnatal muscle regeneration. Herein, we report for the first time that Mstn is expressed in both epidermis and dermis of murine and human skin and that Mstn-null mice exhibited delayed skin wound healing attributable to a combination of effects resulting from delayed epidermal reepithelialization and dermal contraction. In epidermis, reduced keratinocyte migration and protracted keratinocyte proliferation were observed, which subsequently led to delayed recovery of epidermal thickness and slower reepithelialization. Furthermore, primary keratinocytes derived from Mstn-null mice displayed reduced migration capacity and increased proliferation rate as assessed through in vitro migration and adhesion assays, as well as bromodeoxyuridine incorporation and Western blot analysis. Moreover, in dermis, both fibroblast-to-myofibroblast transformation and collagen deposition were concomitantly reduced, resulting in a delayed dermal wound contraction. These decreases are due to the inhibition of TGF-β signaling. In agreement, the expression of decorin, a naturally occurring TGF-β suppressor, was elevated in Mstn-null mice; moreover, topical treatment with TGF-β1 protein rescued the impaired skin wound healing observed in Mstn-null mice. These observations highlight the interplay between TGF-β and Mstn signaling pathways, specifically through Mstn regulation of decorin levels during the skin wound healing process. Thus we propose that Mstn agonists might be beneficial for skin wound repair.


2020 ◽  
Vol 18 (3) ◽  
pp. 229-235
Author(s):  
Lydmila K. Khnychenko ◽  
Elena N. Selina ◽  
Olga M. Rodionova ◽  
Levon B. Piotrovskiy ◽  
Petr D. Shabanov

Materials and methods. In experiments on 180 male rats weighing 180200 g, the wound-healing effect of derivatives of imidazole (IEM-1181) was evaluated as a 10% ointment on models of aseptic full-layer linear and planar skin wounds. Results. It was found that the compound IEM-1181 in the form of 10% ointment has a pronounced on skin wound healing effect, manifested in the qualitative features of the regenerative healing process. With local application of the ointment containing the tested compound, the strength of the tissue formed on the site of a full-layer linear skin wound was increased when its edges were stretched, and the healing time of full-layer planar wounds was reduced. The morphological picture of the tissue formed at the site of the wound defect corresponded to complete healing by primary tension with complete epithelization of the surface and squamous cell differentiation of the epithelial regenerate without signs of inflammation and scar formation. Conclusion. The results of the study on experimental models of full-layer linear and planar skin wounds indicate that the wound healing effect of the tested ointment is due to the anti-inflammatory activity of the IEM-1181 compound


2003 ◽  
Vol 228 (6) ◽  
pp. 724-729 ◽  
Author(s):  
Hideyoshi Toyokawa ◽  
Yoichi Matsui ◽  
Junya Uhara ◽  
Hideto Tsuchiya ◽  
Shigeru Teshima ◽  
...  

The biological effects of far-infrared ray (FIR) on whole organisms remain poorly understood. The aim of our study was to investigate not only the hyperthermic effect of the FIR irradiation, but also the biological effects of FIR on wound healing. To evaluate the effect of FIR on a skin wound site, the speed of full-thickness skin wound healing was compared among groups with and without FIR using a rat model. We measured the skin wound area, skin blood flow, and skin temperature before and during FIR irradiation, and we performed histological inspection. Wound healing was significantly more rapid with than without FIR. Skin blood flow and skin temperature did not change significantly before or during FIR irradiation. Histological findings revealed greater collagen regeneration and infiltration of fibroblasts that expressed transforming growth factor-β1 (TGF-β1) in wounds in the FIR group than in the group without FIR. Stimulation of the secretion of TGF-β1 or the activation of fibroblasts may be considered as a possible mechanisms for the promotive effect of FIR on wound healing independent of skin blood flow and skin temperature.


2009 ◽  
Vol 69 (4) ◽  
pp. 1195-1201 ◽  
Author(s):  
CC. Lima ◽  
APC. Pereira ◽  
JRF. Silva ◽  
LS. Oliveira ◽  
MCC. Resck ◽  
...  

BACKGROUND: Healing is a complex process that involves cellular and biochemical events. Several medicines have been used in order to shorten healing time and avoid aesthetic damage. OBJECTIVE: to verify the topical effect of ascorbic acid for the healing of rats' skin wounds through the number of macrophages, new vessels and fibroblast verifications in the experimental period; and analyse the thickness and the collagen fibre organization in the injured tissue. METHODS: Male Rattus norvegicus weighing 270 ± 30 g were used. After thionembutal anesthesia, 15 mm transversal incisions were made in the animals' cervical backs. They were divided into two groups: Control Group (CG, n = 12) - skin wound cleaned with water and soap daily; Treated Group (TG, n = 12) - skin wound cleaned daily and treated with ascorbic acid cream (10%). Samples of skin were collected on the 3rd, 7th and 14th days. The sections were stained with hematoxylin-eosin and picrosirius red for morphologic analysis. The images were obtained and analysed by a Digital Analyser System. RESULTS: The ascorbic acid acted on every stage of the healing process. It reduced the number of macrophages, increased the proliferation of fibroblasts and new vessels, and stimulated the synthesis of thicker and more organized collagen fibres in the wounds when compared to CG. CONCLUSION: Ascorbic acid was shown to have anti-inflammatory and healing effects, guaranteeing a suiTable environment and conditions for faster skin repair.


2013 ◽  
Vol 49 (4) ◽  
pp. 729-736 ◽  
Author(s):  
Mirna Luciano de Gois da Silva ◽  
Amanda Campos Fortes ◽  
Adriana da Rocha Tomé ◽  
Edson Cavalcanti da Silva Filho ◽  
Rivelilson Mendes de Freitas ◽  
...  

In view of growing interest in natural treatments, clays would appear to be a good alternative for speeding up the healing process during the treatment of wounds. Of the various clays, palygorskite, a clay from the Brazilian State of Piauí, composed of silicon and aluminum, has shown itself to be pharmaceutically useful as a healing agent. The aim of this article is to evaluate the effect on the healing of wounds of Piauí palygorskite, both in its natural state and when organophilic, by way of comparative analysis of macroscopic and histological tests on skin wounds in adult male and female two-month-old Wistar rats. To this end, a circular trichotomy of the dorsal cornus of the rats was carried out to confirm the effects of treatments involving 0.9% saline solution, collagenase, natural palygorskite, organophilic palygorskite with cetyltrimethylammonium chloride, and organophilic palygorskite with alkyldimethylbenzylammonium chloride. The testing of all the clays involved microbiological evaluation using the depth of plaque and surface striation methods, along with post-treatment macroscopic analysis of skin wounds by way of organoleptics, pachymetry and histological analysis. Microbiological evaluation revealed the need for sterilization of the clay prior to incorporation in the pharmaceutical form. Macroscopic analysis suggests that healing of the wounded area occurred, and histological analysis showed the beneficial effect of the topical use of clay material. Our data suggest that palygorskite may be more powerful than other healing agents, although, on completing treatment, all the animals studied showed the same degree of tissue repair.


Molecules ◽  
2018 ◽  
Vol 23 (10) ◽  
pp. 2611 ◽  
Author(s):  
Xionglin Chen ◽  
Xiaoming Cao ◽  
He Jiang ◽  
Xiangxin Che ◽  
Xiaoyuan Xu ◽  
...  

: Skin wound healing is a complex and dynamic process that involves angiogenesis and growth factor secretion. Newly formed vessels can provide nutrition and oxygen for skin wound healing. Growth factors in skin wounds are important for keratinocytes and fibroblasts proliferation, epithelialization, extracellular matrix remodeling, and angiogenesis, which accelerate skin wound healing. Therefore, treatment strategies that enhance angiogenesis and growth factors secretion in skin wounds can accelerate skin wound healing. This study investigated the effects of a SIKVAV (Ser-Ile-Lys-Val-Ala-Val) peptide-modified chitosan hydrogel on skin wound healing. Hematoxylin and eosin (H&E) staining demonstrated that the SIKVAV-modified chitosan hydrogel accelerated the re-epithelialization of wounds compared with that seen in the negative and positive controls. Masson’s trichrome staining showed that more collagen fibers were deposited in the skin wounds treated with the SIKVAV-modified chitosan hydrogel than in the negative and positive controls. Immunohistochemistry assays demonstrated that more myofibroblasts were deposited and more angiogenesis occurred in skin wounds treated with the SIKVAV-modified chitosan hydrogel than in the negative and positive controls. In addition, ELISA assays showed that the SIKVAV-modified chitosan hydrogels promoted the secretion of growth factors in skin wounds. Taken together, these results suggest that the SIKVAV-modified chitosan hydrogel has the potential to be developed as synthesized biomaterials for the treatment of skin wounds.


Sign in / Sign up

Export Citation Format

Share Document