scholarly journals 3D printed construction and implementation in Cyprus: Discussion and overview

Author(s):  
Mohamed Elasad ◽  
Dinmukhamed Amirov

The article describes the construction technology using three-dimensional printing. The use of 3D printing allows the engineers to implement architectural projects of any complexity, to reduce the amount of industrial waste, the deficit of housing, and material, energy and labour costs for construction. The article discusses the leading technologies that are used to print buildings and structures, their distinguishing features, methods of their application with examples of finished work. The issue of materials used for the manufacture of building mixtures and the present situation of 3D printing on the global market was identified in this investigation. All the positive and negative aspects of the 3D printing construction are listed. The construction companies, equipment manufacturers and research centres, which are the main participants in the market, are reviewed. The primary purposes of the study are the determination of the possibility of implementation of additive technologies in Cyprus and the promotion of innovative construction methods.

Author(s):  
Yanyan Ma ◽  
Peng Ding ◽  
Lanlan Li ◽  
Yang Liu ◽  
Ping Jin ◽  
...  

AbstractHeart diseases remain the top threat to human health, and the treatment of heart diseases changes with each passing day. Convincing evidence shows that three-dimensional (3D) printing allows for a more precise understanding of the complex anatomy associated with various heart diseases. In addition, 3D-printed models of cardiac diseases may serve as effective educational tools and for hands-on simulation of surgical interventions. We introduce examples of the clinical applications of different types of 3D printing based on specific cases and clinical application scenarios of 3D printing in treating heart diseases. We also discuss the limitations and clinically unmet needs of 3D printing in this context.


Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 353
Author(s):  
Yanting Han ◽  
Qianqian Wei ◽  
Pengbo Chang ◽  
Kehui Hu ◽  
Oseweuba Valentine Okoro ◽  
...  

Hydroxyapatite (HA) and HA-based nanocomposites have been recognized as ideal biomaterials in hard tissue engineering because of their compositional similarity to bioapatite. However, the traditional HA-based nanocomposites fabrication techniques still limit the utilization of HA in bone, cartilage, dental, applications, and other fields. In recent years, three-dimensional (3D) printing has been shown to provide a fast, precise, controllable, and scalable fabrication approach for the synthesis of HA-based scaffolds. This review therefore explores available 3D printing technologies for the preparation of porous HA-based nanocomposites. In the present review, different 3D printed HA-based scaffolds composited with natural polymers and/or synthetic polymers are discussed. Furthermore, the desired properties of HA-based composites via 3D printing such as porosity, mechanical properties, biodegradability, and antibacterial properties are extensively explored. Lastly, the applications and the next generation of HA-based nanocomposites for tissue engineering are discussed.


2022 ◽  
Vol 14 (1) ◽  
pp. 32-39
Author(s):  
Sachit Anand ◽  
Nellai Krishnan ◽  
Prabudh Goel ◽  
Anjan Kumar Dhua ◽  
Vishesh Jain ◽  
...  

Background: In cases with solid tumors, preoperative radiological investigations provide valuable information on the anatomy of the tumor and the adjoining structures, thus helping in operative planning. However, due to a two-dimensional view in these investigations, a detailed spatial relationship is difficult to decipher. In contrast, three-dimensional (3D) printing technology provides a precise topographic view to perform safe surgical resections of these tumors. This systematic review aimed to summarize and analyze current evidence on the utility of 3D printing in pediatric extra-cranial solid tumors. Methods: The present study was registered on PROSPERO—international prospective register of systematic reviews (registration number: CRD42020206022). PubMed, Embase, SCOPUS, and Google Scholar databases were explored with appropriate search criteria to select the relevant studies. Data were extracted to study the bibliographic information of each article, the number of patients in each study, age of the patient(s), type of tumor, organ of involvement, application of 3D printing (surgical planning, training, and/or parental education). The details of 3D printing, such as type of imaging used, software details, printing technique, printing material, and cost were also synthesized. Results: Eight studies were finally included in the systematic review. Three-dimensional printing technology was used in thirty children with Wilms tumor (n = 13), neuroblastoma (n = 7), hepatic tumors (n = 8), retroperitoneal tumor (n = 1), and synovial sarcoma (n = 1). Among the included studies, the technology was utilized for preoperative surgical planning (five studies), improved understanding of the surgical anatomy of solid organs (two studies), and improving the parental understanding of the tumor and its management (one study). Computed tomography and magnetic resonance imaging were either performed alone or in combination for radiological evaluation in these children. Different types of printers and printing materials were used in the included studies. The cost of the 3D printed models and time involved (range 10 h to 4–5 days) were reported by two studies each. Conclusions: 3D printed models can be of great assistance to pediatric surgeons in understanding the spatial relationships of tumors with the adjacent anatomic structures. They also facilitate the understanding of families, improving doctor–patient communication.


2020 ◽  
Vol 11 (1) ◽  
pp. 161-170
Author(s):  
J-R. R. Diego ◽  
Dan William C. Martinez ◽  
Gerald S. Robles ◽  
John Ryan C. Dizon

AbstractThis study addresses the need for assistive technology of people who lost control of their upper limbs as well as people who are undergoing rehabilitation. Loss of upper limb control causes lack of functionality and social acceptability especially for many people in developing countries with fewer available technology. The study develops a modern but low-cost prosthetic device that can be controlled by users using a smartphone and can be rapidly manufactured using three-dimensional printing (3D printing) of plastic materials. The development of the prosthetic device includes designing the mechanical and electronic parts, programming the Arduino board and Android application for control, simulation and analysis of 3D printed parts most subjected to stress, and 3D printing the parts under different settings. The device was tested in terms of time spent and capacity of lifting varying loads when not worn and when worn by users. The device can effectively lift 500 grams of load in one second for a person weighing between 50 to 60 kilograms.


2020 ◽  
Author(s):  
Jung-Hyun Park ◽  
Hyun Lee ◽  
Jong-Woo Kim ◽  
Ji-Hwan Kim

Abstract Background Three-dimensional (3D) printing is widely used in the fabrication of dental prostheses; however, the influence of dental materials used for 3D printing on temporary restoration of fibroblasts in tissues is unclear. Thus, the influence of different dental materials on fibroblasts were investigated. Methods Digital light processing (DLP) type 3D printing was used. Specimens in the control group were fabricated by mixing liquid and powder self-curing resin restoration materials. The temporary resin materials used were Model, Castable, Clear-SG, Tray, and Temporary, and the self-curing resin materials used were Lang dental, Alike, Milky blue, TOKVSO CUREFAST, and UniFast III. Fibroblast cells were cultured on each specimen and subsequently post-treated for analysis. Morphology of the adhered cells were observed using a confocal laser scanning microscope (CLSM) and a scanning electron microscope (SEM). Results CLSM and SEM cell imaging revealed that the 3D printed material group presented better cell adhesion with well-distributed filopodia compared to that in the conventional resin material group. Cell proliferation was significantly higher in the 3D printing materials. Conclusion This indicates that using resins fabricated by 3D printing technology rather than the ones fabricated by self-curing technology is recommended for the fabrication of dental temporary restorations.


Author(s):  
V. Kovan ◽  
G. Altan ◽  
E.S. Topal ◽  
H.E. Camurlu

Three-dimensional printing or 3D printing (also called additive manufacturing) is any of various processes used to make a three-dimensional object. Fused deposition modelling (FDM) is an additive manufacturing technology commonly used for modelling, prototyping, and production applications. It is one of the techniques used for 3D printing. FDM is somewhat restricted in the size and the variation of shapes that may be fabricated. For parts too large to fit on a single build, for faster job builds with less support material, or for parts with finer features, sectioning and bonding FDM parts is a great solution. The strength of adhesive bonded FDM parts is affected by the surface roughness. In this study, the layer thickness effect on bonding strength is experimentally studied and the results are discussed.


2020 ◽  
Vol 4 (1) ◽  
Author(s):  
Kiril Stoyanov ◽  
◽  
◽  

Some of the most impressive architectural masterpieces of the past, such as the Cologne Cathedral or the Cathedral in Milan, have taken several centuries for their creation and have involved thousands of people. Today, a glossy office building in Dubai has been built or rather printed in just 17 days, with 29 workers involved. Three-dimensional printing has been identified as the Fourth Industrial Revolution and is increasingly replacing traditional construction methods. There is no doubt that 3D printing will affect the design and production of buildings. Does the fact that 3D printing can be used means that it should replace analog with digital construction?


2018 ◽  
Vol 69 (6) ◽  
pp. 1455-1457
Author(s):  
Dragos Octavian Palade ◽  
Bogdan Mihail Cobzeanu ◽  
Petronela Zaharia ◽  
Marius Dabija

Three-dimensional printing has numerous applications and has gained much interest in the medical world. The constantly improving quality of 3D-printing applications has contributed to their increased use on patients. Nowadays, 3D printing is very well integrated in the surgical practice and research. Also, the field of head and neck reconstructive surgery is constantly evolving because of the three-dimensional printing, a technology which can be widely used in a variety of situations such as reconstruction of tissue defects, surgical planning, medical modeling and prosthesis. By using 3D printing into tissue engineering and materials, it may be possible for otolaryngologists to implant 3D printed functional grafts into patients and will also provide a rapid production of personalized patient-specific devices. Advances in 3D printed implants and future tissue-engineered constructs will bring great progress to the field of otorhinolaryngology.


Author(s):  
Angeliki Siamidi ◽  
Eleni Tsintavi ◽  
Dimitrios M. Rekkas ◽  
Marilena Vlachou

The broad spectrum of applications of three-dimensional printing (3D printing, 3DP) has attracted the attention of researchers working in diverse fields. In pharmaceutics, the main idea behind 3D printing products is to design and develop delivery systems that are suited to an individual’s needs. In this way, the size, appearance, shape, and rate of delivery of a wide array of medicines could be easily adjusted. The aim of this chapter is to provide a compilation of the 3D printing techniques, used for the fabrication of oral drug delivery systems, and review the relevant scientific developments in particular those with modified-release characteristics.


2020 ◽  
pp. 193864002097141
Author(s):  
Rishin J. Kadakia ◽  
Colleen M. Wixted ◽  
Cambre N. Kelly ◽  
Andrew E. Hanselman ◽  
Samuel B. Adams

Three-dimensional (3D) printing technology has advanced greatly over the past decade and is being used extensively throughout the field of medicine. Several orthopaedic surgery specialties have demonstrated that 3D printing technology can improve patient care and physician education. Foot and ankle pathology can be complex as the 3D anatomy can be challenging to appreciate. Deformity can occur in several planes simultaneously and bone defects either from previous surgery or trauma can further complicate surgical correction. Three-dimensional printing technology provides an avenue to tackle the challenges associated with complex foot and ankle pathology. A basic understanding of how these implants are designed and made is important for surgeons as this technology is becoming more widespread and the clinical applications continue to grow within foot and ankle surgery. Levels of Evidence: Level V


Sign in / Sign up

Export Citation Format

Share Document