scholarly journals Chitosan – A Novel Biopolymer AS A Potential Drug Delivery Vehicle

Author(s):  
Shlini P ◽  
Nidhi Mohan ◽  
Shobha Mule

Chitosan is a natural linear amino polysaccharide produced from the deacetylation of chitin obtained from crustaceans and insects. Chitosan structure consists of 2-acetamido-d-glucose and 2-amino-d-glucose units linked with glycosidic linkages. It is a versatile compound due to presence of reactive amino and hydroxyl groups making it easily available for chemical reactions. Various functional chitosan derivatives have been prepared using ionic interactions and other chemical modifications. Chitosan is known to exhibit excellent properties such as biodegradability, biocompatibility, non-toxicity and easy absorption which led to significant research towards industrial, pharmaceutical and biomedical applications. This review discusses the importance and characteristics of chitosan and its derivatives by describing various aspects including biological properties, chemical properties, techniques of preparation and its applications.

Nano LIFE ◽  
2013 ◽  
Vol 03 (04) ◽  
pp. 1343002 ◽  
Author(s):  
PAUL A. TURNER ◽  
GAURAV V. JOSHI ◽  
C. ANDREW WEEKS ◽  
R. SCOTT WILLIAMSON ◽  
AARON D. PUCKETT ◽  
...  

Elastin-like polypeptide (ELP) containing materials have spurred significant research interest for biomedical applications exploiting their biocompatible, biodegradable and nonimmunogenic nature while maintaining precise control over their chemical structure and functionality through genetic engineering. Physical, mechanical and biological properties of ELPs could be further manipulated using genetic engineering or through conjugation with a variety of chemical moieties. These chemical and physical modifications also achieve interesting micro- and nanostructured ELP-based materials. Here, we review the recent developments during the past decade in the methods to engineer elastin-like materials, available genetic and chemical modification methods and applications of ELP micro and nanostructures in tissue engineering and drug delivery.


Marine Drugs ◽  
2021 ◽  
Vol 19 (8) ◽  
pp. 437
Author(s):  
Milena Álvarez-Viñas ◽  
Sandra Souto ◽  
Noelia Flórez-Fernández ◽  
Maria Dolores Torres ◽  
Isabel Bandín ◽  
...  

Carrageenan and carrageenan oligosaccharides are red seaweed sulfated carbohydrates with well-known antiviral properties, mainly through the blocking of the viral attachment stage. They also exhibit other interesting biological properties and can be used to prepare different drug delivery systems for controlled administration. The most active forms are λ-, ι-, and κ-carrageenans, the degree and sulfation position being determined in their properties. They can be obtained from sustainable worldwide available resources and the influence of manufacturing on composition, structure, and antiviral properties should be considered. This review presents a survey of the antiviral properties of carrageenan in relation to the processing conditions, particularly those assisted by intensification technologies during the extraction stage, and discusses the possibility of further chemical modifications.


Author(s):  
Weibing Teng ◽  
Joseph Cappello ◽  
Xiaoyi Wu

Genetic engineering of protein-based materials provides material scientists with high levels of control in material microstructures, properties, and functions [1]. For example, multi-block protein copolymers in which individual block may possess distinct mechanical or biological properties have been biosynthesized [2, 3]. Polypeptide sequences derived from well-studied structural proteins (e.g., collagen, silk, elastin) are often used as motifs in the design and synthesis of new protein-based material, in which new functional groups may be incorporated. In this fashion, we have produced a series of silk-elastin-like proteins (SELPs) consisting of polypeptide sequences derived from silk of superior mechanical strength and elastin that is extremely durable and resilient [2, 4]. Notably, the silk-like blocks are capable of crystallizing to form virtual cross-links between elastin-mimetic sequences, which, in turn, lower the crystallinity of the silk-like blocks and thus enhance the solubility of SELPs. Consequently, SELPs may be fabricated into useful structures for biomedical applications, including drug delivery. In this study, we will characterize viscoelastic properties of SELPs, which are particularly relevant to tissue engineering applications.


2021 ◽  
Vol 18 ◽  
Author(s):  
Simran Kaur ◽  
Soumava Santra

: Guar gum (GG) is a natural heteropolysaccharide. Due to its non-toxic, eco-friendly, and biodegradable nature, GG has found wide applications in many areas, in particular food, paper, textile, petroleum, and pharmaceutical industries. Therefore, GG is often called “Black Gold” as well. Due to the presence of hydroxyl groups, GG can be modified by various methods. The physical and biological properties of GG can be modulated by chemical modifications. In this manuscript, various methods for the chemical modifications of GG have been discussed according to the type of modifications. Mechanistic insights have also been provided whenever possible. In addition, potential applications of new GG derivatives have also been briefly mentioned.


Marine Drugs ◽  
2019 ◽  
Vol 17 (12) ◽  
pp. 654 ◽  
Author(s):  
Ana Isabel Barbosa ◽  
Ana Joyce Coutinho ◽  
Sofia A. Costa Lima ◽  
Salette Reis

The use of marine-origin polysaccharides has increased in recent research because they are abundant, cheap, biocompatible, and biodegradable. These features motivate their application in nanotechnology as drug delivery systems; in tissue engineering, cancer therapy, or wound dressing; in biosensors; and even water treatment. Given the physicochemical and bioactive properties of fucoidan and chitosan, a wide range of nanostructures has been developed with these polysaccharides per se and in combination. This review provides an outline of these marine polysaccharides, including their sources, chemical structure, biological properties, and nanomedicine applications; their combination as nanoparticles with descriptions of the most commonly used production methods; and their physicochemical and biological properties applied to the design of nanoparticles to deliver several classes of compounds. A final section gives a brief overview of some biomedical applications of fucoidan and chitosan for tissue engineering and wound healing.


2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Boyang Huang

Abstract Carbon nanotubes (CNTs), with unique graphitic structure, superior mechanical, electrical, optical and biological properties, has attracted more and more interests in biomedical applications, including gene/drug delivery, bioimaging, biosensor and tissue engineering. In this review, we focus on the role of CNTs and their polymeric composites in tissue engineering applications, with emphasis on their usages in the nerve, cardiac and bone tissue regenerations. The intrinsic natures of CNTs including their physical and chemical properties are first introduced, explaining the structure effects on CNTs electrical conductivity and various functionalization of CNTs to improve their hydrophobic characteristics. Biosafety issues of CNTs are also discussed in detail including the potential reasons to induce the toxicity and their potential strategies to minimise the toxicity effects. Several processing strategies including solution-based processing, polymerization, melt-based processing and grafting methods are presented to show the 2D/3D construct formations using the polymeric composite containing CNTs. For the sake of improving mechanical, electrical and biological properties and minimising the potential toxicity effects, recent advances using polymer/CNT composite the tissue engineering applications are displayed and they are mainly used in the neural tissue (to improve electrical conductivity and biological properties), cardiac tissue (to improve electrical, elastic properties and biological properties) and bone tissue (to improve mechanical properties and biological properties). Current limitations of CNTs in the tissue engineering are discussed and the corresponded future prospective are also provided. Overall, this review indicates that CNTs are promising “next-generation” materials for future biomedical applications.


2020 ◽  
Vol 13 (11) ◽  
pp. 335
Author(s):  
Hazem Choukaife ◽  
Abd Almonem Doolaanea ◽  
Mulham Alfatama

Nanocarriers are defined as structures and devices that are constructed using nanomaterials which add functionality to the encapsulants. Being small in size and having a customized surface, improved solubility and multi-functionality, it is envisaged that nanoparticles will continue to create new biomedical applications owing to their stability, solubility, and bioavailability, as well as controlled release of drugs. The type and physiochemical as well as morphological attributes of nanoparticles influence their interaction with living cells and determine the route of administration, clearance, as well as related toxic effects. Over the past decades, biodegradable polymers such as polysaccharides have drowned a great deal of attention in pharmaceutical industry with respect to designing of drug delivery systems. On this note, biodegradable polymeric nanocarrier is deemed to control the release of the drug, stabilize labile molecules from degradation and site-specific drug targeting, with the main aim of reducing the dosing frequency and prolonging the therapeutic outcomes. Thus, it is essential to select the appropriate biopolymer material, e.g., sodium alginate to formulate nanoparticles for controlled drug delivery. Alginate has attracted considerable interest in pharmaceutical and biomedical applications as a matrix material of nanocarriers due to its inherent biological properties, including good biocompatibility and biodegradability. Various techniques have been adopted to synthesize alginate nanoparticles in order to introduce more rational, coherent, efficient and cost-effective properties. This review highlights the most used and recent manufacturing techniques of alginate-based nanoparticulate delivery system, including emulsification/gelation complexation, layer-by-layer, spray drying, electrospray and electrospinning methods. Besides, the effects of the main processing and formulation parameters on alginate nanoparticles are also summarized.


2007 ◽  
Vol 8 (11) ◽  
pp. 3401-3407 ◽  
Author(s):  
Jua Jung ◽  
In-Hyun Lee ◽  
Eunhye Lee ◽  
Jinho Park ◽  
Sangyong Jon

2017 ◽  
Vol 68 (2) ◽  
pp. 384-386 ◽  
Author(s):  
Danut Vasile ◽  
Raluca Iancu ◽  
Camelia Bogdanici ◽  
Emil Ungureanu ◽  
Dana Ciobotea ◽  
...  

Hyaluronic acid is a mucopolysaccharide encountered in most body fluids and extracellular matrix. The aim of our review is to summarize current evidence about chemico-physical properties of hyaluronic acid, highlighting biomedical applications of hyaluronan derivatives. It is a glycosaminoglycan made of repeating disaccharide units containing a carboxylate group, four hydroxyl groups and one carboxylate group, with hydrophilic properties. Its particular structure with multiple coils forming an entangled network results in unique pseudoplastic and viscoelastic characteristics. Its viscous and elastic behavior, depending on the applied strain, makes hyaluronan widely applicable in biomedical field. The large amount of functions and applications is determined by the physico-chemical properties, which allows a polymorphism of the hyaluronic acid structures depending on the molecular weight variations, concentration and ionic status. It is currently used in ophthalmology, orthopedics and rheumatology, in plastic surgery, surgery and otolaryngology as well. Already widely used in clinical practice, hyaluronic acid proves to be often the best solution for difficult medical problems. Future developments in nanomedicine and drug delivery linked to hyaluronic acid are emerging.


2021 ◽  
Author(s):  
Hina Shoukat ◽  
Khuda Buksh ◽  
Sobia Noreen ◽  
Fahad Pervaiz ◽  
Irsah Maqbool

Hydrogels are 3D crosslinked polymer matrices having a colossal tendency to imbibe water and exhibit swelling under physiological conditions without deformation in their hydrophilic network. Hydrogels being biodegradable and biocompatible, gained consideration due to some unique characteristics: responsiveness to external stimuli (pH, temperature) and swelling in aqueous solutions. Hydrogels offer a promising option for various pharmaceutical and biomedical applications, including tissue-specific drug delivery at a predetermined, controlled rate. This article presents a brief review of the recent and fundamental advances to design hydrogels, the swelling and deswelling mechanism, various crosslinking methods and their use as an intelligent carrier in the pharmaceutical field. Recent applications of hydrogels are also briefly discussed and exemplified.


Sign in / Sign up

Export Citation Format

Share Document