NANO AND MICRO-STRUCTURES OF ELASTIN-LIKE POLYPEPTIDE-BASED MATERIALS AND THEIR APPLICATIONS: RECENT DEVELOPMENTS

Nano LIFE ◽  
2013 ◽  
Vol 03 (04) ◽  
pp. 1343002 ◽  
Author(s):  
PAUL A. TURNER ◽  
GAURAV V. JOSHI ◽  
C. ANDREW WEEKS ◽  
R. SCOTT WILLIAMSON ◽  
AARON D. PUCKETT ◽  
...  

Elastin-like polypeptide (ELP) containing materials have spurred significant research interest for biomedical applications exploiting their biocompatible, biodegradable and nonimmunogenic nature while maintaining precise control over their chemical structure and functionality through genetic engineering. Physical, mechanical and biological properties of ELPs could be further manipulated using genetic engineering or through conjugation with a variety of chemical moieties. These chemical and physical modifications also achieve interesting micro- and nanostructured ELP-based materials. Here, we review the recent developments during the past decade in the methods to engineer elastin-like materials, available genetic and chemical modification methods and applications of ELP micro and nanostructures in tissue engineering and drug delivery.

Marine Drugs ◽  
2019 ◽  
Vol 17 (12) ◽  
pp. 654 ◽  
Author(s):  
Ana Isabel Barbosa ◽  
Ana Joyce Coutinho ◽  
Sofia A. Costa Lima ◽  
Salette Reis

The use of marine-origin polysaccharides has increased in recent research because they are abundant, cheap, biocompatible, and biodegradable. These features motivate their application in nanotechnology as drug delivery systems; in tissue engineering, cancer therapy, or wound dressing; in biosensors; and even water treatment. Given the physicochemical and bioactive properties of fucoidan and chitosan, a wide range of nanostructures has been developed with these polysaccharides per se and in combination. This review provides an outline of these marine polysaccharides, including their sources, chemical structure, biological properties, and nanomedicine applications; their combination as nanoparticles with descriptions of the most commonly used production methods; and their physicochemical and biological properties applied to the design of nanoparticles to deliver several classes of compounds. A final section gives a brief overview of some biomedical applications of fucoidan and chitosan for tissue engineering and wound healing.


Author(s):  
Shlini P ◽  
Nidhi Mohan ◽  
Shobha Mule

Chitosan is a natural linear amino polysaccharide produced from the deacetylation of chitin obtained from crustaceans and insects. Chitosan structure consists of 2-acetamido-d-glucose and 2-amino-d-glucose units linked with glycosidic linkages. It is a versatile compound due to presence of reactive amino and hydroxyl groups making it easily available for chemical reactions. Various functional chitosan derivatives have been prepared using ionic interactions and other chemical modifications. Chitosan is known to exhibit excellent properties such as biodegradability, biocompatibility, non-toxicity and easy absorption which led to significant research towards industrial, pharmaceutical and biomedical applications. This review discusses the importance and characteristics of chitosan and its derivatives by describing various aspects including biological properties, chemical properties, techniques of preparation and its applications.


Insects ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 484
Author(s):  
Syed Arif Hussain Rizvi ◽  
Justin George ◽  
Gadi V. P. Reddy ◽  
Xinnian Zeng ◽  
Angel Guerrero

Since the first identification of the silkworm moth sex pheromone in 1959, significant research has been reported on identifying and unravelling the sex pheromone mechanisms of hundreds of insect species. In the past two decades, the number of research studies on new insect pheromones, pheromone biosynthesis, mode of action, peripheral olfactory and neural mechanisms, and their practical applications in Integrated Pest Management has increased dramatically. An interdisciplinary approach that uses the advances and new techniques in analytical chemistry, chemical ecology, neurophysiology, genetics, and evolutionary and molecular biology has helped us to better understand the pheromone perception mechanisms and its practical application in agricultural pest management. In this review, we present the most recent developments in pheromone research and its application in the past two decades.


Author(s):  
Weibing Teng ◽  
Joseph Cappello ◽  
Xiaoyi Wu

Genetic engineering of protein-based materials provides material scientists with high levels of control in material microstructures, properties, and functions [1]. For example, multi-block protein copolymers in which individual block may possess distinct mechanical or biological properties have been biosynthesized [2, 3]. Polypeptide sequences derived from well-studied structural proteins (e.g., collagen, silk, elastin) are often used as motifs in the design and synthesis of new protein-based material, in which new functional groups may be incorporated. In this fashion, we have produced a series of silk-elastin-like proteins (SELPs) consisting of polypeptide sequences derived from silk of superior mechanical strength and elastin that is extremely durable and resilient [2, 4]. Notably, the silk-like blocks are capable of crystallizing to form virtual cross-links between elastin-mimetic sequences, which, in turn, lower the crystallinity of the silk-like blocks and thus enhance the solubility of SELPs. Consequently, SELPs may be fabricated into useful structures for biomedical applications, including drug delivery. In this study, we will characterize viscoelastic properties of SELPs, which are particularly relevant to tissue engineering applications.


2020 ◽  
Vol 13 (11) ◽  
pp. 335
Author(s):  
Hazem Choukaife ◽  
Abd Almonem Doolaanea ◽  
Mulham Alfatama

Nanocarriers are defined as structures and devices that are constructed using nanomaterials which add functionality to the encapsulants. Being small in size and having a customized surface, improved solubility and multi-functionality, it is envisaged that nanoparticles will continue to create new biomedical applications owing to their stability, solubility, and bioavailability, as well as controlled release of drugs. The type and physiochemical as well as morphological attributes of nanoparticles influence their interaction with living cells and determine the route of administration, clearance, as well as related toxic effects. Over the past decades, biodegradable polymers such as polysaccharides have drowned a great deal of attention in pharmaceutical industry with respect to designing of drug delivery systems. On this note, biodegradable polymeric nanocarrier is deemed to control the release of the drug, stabilize labile molecules from degradation and site-specific drug targeting, with the main aim of reducing the dosing frequency and prolonging the therapeutic outcomes. Thus, it is essential to select the appropriate biopolymer material, e.g., sodium alginate to formulate nanoparticles for controlled drug delivery. Alginate has attracted considerable interest in pharmaceutical and biomedical applications as a matrix material of nanocarriers due to its inherent biological properties, including good biocompatibility and biodegradability. Various techniques have been adopted to synthesize alginate nanoparticles in order to introduce more rational, coherent, efficient and cost-effective properties. This review highlights the most used and recent manufacturing techniques of alginate-based nanoparticulate delivery system, including emulsification/gelation complexation, layer-by-layer, spray drying, electrospray and electrospinning methods. Besides, the effects of the main processing and formulation parameters on alginate nanoparticles are also summarized.


2020 ◽  
Vol 13 (4) ◽  
pp. 246-254 ◽  
Author(s):  
Zufika Qamar ◽  
Farheen Fatima Qizilbash ◽  
Mohammad Kashif Iqubal ◽  
Asgar Ali ◽  
Jasjeet Kaur Narang ◽  
...  

The structure of the eye is very complex in nature which makes it a challenging task for pharmaceutical researchers to deliver the drug at the desired sites via different routes of administration. The development of the nano-based system helped in delivering the drug in the desired concentration. Improvement in penetration property, bioavailability, and residence time has all been achieved by encapsulating drugs into liposomes, dendrimers, solid lipid nanoparticle, nanostructured lipid carrier, nanoemulsion, and nanosuspension. This review puts emphasis on the need for nanomedicine for ocular drug delivery and recent developments in the field of nanomedicine along with recent patents published in the past few years.


2021 ◽  
Author(s):  
Sumit Kumar ◽  
Pannuru Venkatesu

During the past few decades, gold nanoparticles (AuNPs) have attracted a numerous of attention owing to their biomedical applications like therapeutic and drug delivery, however, the detailed biomolecular interactions and...


Biomimetics ◽  
2019 ◽  
Vol 4 (2) ◽  
pp. 32 ◽  
Author(s):  
Collado-González ◽  
González Espinosa ◽  
Goycoolea

The term chitosan (CS) refers to a family of aminopolysaccharides derived from chitin. Among other properties, CS is nontoxic, mucoadhesive and can be used for load and transport drugs. Given these and other physicochemical and biological properties, CS is an optimal biopolymer for the development of transmucosal drug delivery systems, as well as for the treatment of pathologies related to mucosal dysfunctions. Mucins are glycoprotein macromolecules that are the major components of mucus overlaying epithelia. CS interacts with mucin and adsorbs on and changes the rheology of mucus. However, CS and mucins denote families of polymers/macromolecules with highly variable chemical structure, properties, and behavior. To date, their interactions at the molecular level have not been completely unraveled. Also, the properties of complexes composed of CS and mucin vary as a function of the sources and preparation of the polymers. As a consequence, the mucoadhesion and drug delivery properties of such complexes vary as well. The breadth of this review is on the molecular interactions between CS and mucin. In particular, in vitro and ex vivo characterization methods to investigate both the interactions at play during the formation of CS-mucin complexes, and the advances on the use of CS for transmucosal drug delivery are addressed.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Cynthia Aslan ◽  
Seyed Hossein Kiaie ◽  
Naime Majidi Zolbanin ◽  
Parisa Lotfinejad ◽  
Reihaneh Ramezani ◽  
...  

AbstractOver the past decade, therapeutic messenger RNAs (mRNAs) have emerged as a highly promising new class of drugs for protein replacement therapies. Due to the recent developments, the incorporation of modified nucleotides in synthetic mRNAs can lead to maximizing protein expression and reducing adverse immunogenicity. Despite these stunning improvements, mRNA therapy is limited by the need for the development of safe and efficient carriers to protect the mRNA integrity for in vivo applications. Recently, leading candidates for in vivo drug delivery vehicles are cell-derived exosomes, which have fewer immunogenic responses. In the current study, the key hurdles facing mRNA-based therapeutics, with an emphasis on recent strategies to overcoming its immunogenicity and instability, were highlighted. Then the immunogenicity and toxicity of exosomes derived from various cell sources were mentioned in detail. Finally, an overview of the recent strategies in using exosomes for mRNA delivery in the treatment of multiple diseases was stated.


Author(s):  
Yogita Patil-Sen

Nano0technology has received considerable attention and interest over the past few decades in the field of biomedicine due to the wide range of applications it provides in disease diagnosis, drug design and delivery, biomolecules detection, tissue engineering and regenerative medicine. Ultra-small size and large surface area of nanomaterials prove to be greatly advantageous for their biomedical applications. Moreover, the physico-chemical and thus, the biological properties of nanomaterials can be manipulated depending on the application. However, stability, efficacy and toxicity of nanoparticles remain challenge for researchers working in this area. This mini-review highlights the recent advances of various types of nanoparticles in biomedicine and will be of great value to researchers in the field of materials science, chemistry, biology and medicine.


Sign in / Sign up

Export Citation Format

Share Document