Strategies for Restoring River Ecosystems: Sources of Variability and Uncertainty in Natural and Managed Systems

<em>Abstract</em>.—Productivity and biodiversity of stream and river ecosystems vary at multiple spatial and temporal scales. Spatial variation in productivity of salmonid fishes varies over two orders of magnitude worldwide and shows lesser, but still considerable, variation at the regional and watershed level. Spatial variation in production and diversity is related to variation in physical, chemical, and biological attributes of watersheds and channels. Channel constraint, gradient, and size are key factors in determining productivity and diversity. Constrained reaches generally support different species and lower productivity than lower-gradient, unconstrained channels. Variation in the condition of stream reaches is greatly influenced by disturbances. Severe disturbances fundamentally change the functional and structural properties of stream ecosystems and alter the way in which the surrounding watershed interacts with the stream. Periodic occurrence of disturbances and the process of recovery play a key role in maintaining spatial and temporal variability in stream conditions and thereby contribute to the productivity and diversity of stream biota. Land use by humans alters the frequency and characteristics of disturbances. As a result, human-altered disturbance patterns often homogenize channel conditions across a watershed rather than introducing diversity. Watershed restoration plans need to recognize the role variability and disturbance play in maintaining the productivity and diversity of stream biota. Incorporating this understanding into watershed management and restoration will require scientists, managers, and policy makers to view watersheds at much longer temporal and larger spatial scales than is currently done.

2019 ◽  
Vol 11 (5) ◽  
pp. 540 ◽  
Author(s):  
Cheryl Doughty ◽  
Kyle Cavanaugh

Salt marsh productivity is an important control of resiliency to sea level rise. However, our understanding of how marsh biomass and productivity vary across fine spatial and temporal scales is limited. Remote sensing provides a means for characterizing spatial and temporal variability in marsh aboveground biomass, but most satellite and airborne sensors have limited spatial and/or temporal resolution. Imagery from unmanned aerial vehicles (UAVs) can be used to address this data gap. We combined seasonal field surveys and multispectral UAV imagery collected using a DJI Matrice 100 and Micasense Rededge sensor from the Carpinteria Salt Marsh Reserve in California, USA to develop a method for high-resolution mapping of aboveground saltmarsh biomass. UAV imagery was used to test a suite of vegetation indices in their ability to predict aboveground biomass (AGB). The normalized difference vegetation index (NDVI) provided the strongest correlation to aboveground biomass for each season and when seasonal data were pooled, though seasonal models (e.g., spring, r2 = 0.67; RMSE = 344 g m−2) were more robust than the annual model (r2 = 0.36; RMSE = 496 g m−2). The NDVI aboveground biomass estimation model (AGB = 2428.2 × NDVI + 120.1) was then used to create maps of biomass for each season. Total site-wide aboveground biomass ranged from 147 Mg to 205 Mg and was highest in the spring, with an average of 1222.9 g m−2. Analysis of spatial patterns in AGB demonstrated that AGB was highest in intermediate elevations that ranged from 1.6–1.8 m NAVD88. This UAV-based approach can be used aid the investigation of biomass dynamics in wetlands across a range of spatial scales.


2020 ◽  
Vol 77 (10) ◽  
pp. 1688-1699
Author(s):  
Nan Zheng ◽  
Matthew Robertson ◽  
Noel Cadigan ◽  
Fan Zhang ◽  
Joanne Morgan ◽  
...  

Fisheries management usually does not explicitly account for spatial variation in life history traits within populations. However, for some stocks this spatial variation may be substantial. We develop a spatiotemporal generalized linear model and fit the model to a long time series of maturation data for American plaice (Hippoglossoides platessoides) on the Grand Bank off Newfoundland and Labrador. The spatiotemporal correlation structure improves estimation of small-scale spatiotemporal variation in maturity across locations and times with limited or few samples. We test how American plaice maturity varies at three different spatial resolutions. We find improvements in model fit when decreasing spatial scales for higher spatial resolution due to high levels of spatial heterogeneity in American plaice maturity at age and size. Modeling variation in life history traits at the appropriate spatial and temporal scales is necessary for understanding population dynamics and developing appropriate fisheries management strategies.


<em>Abstract</em>.—Development of effective restoration strategies for river systems requires the use of scientific concepts about sources of variability and uncertainty. Most of these concepts are based on physical and biological properties, their processes and variability, and human-induced uncertainties within river drainages and their differences across regions. Important natural properties include climate; hydrology; geology; geomorphology; disturbance regimes like floods and fires; connectivity between river channels and floodplains; plant and animal population and community characteristics; and trophic dynamics. A major question when developing restoration strategies is, “How can we use information about variations in natural properties and anthropogenic actions to assist policy makers by reducing the uncertainty of decisions and to better manage river ecosystems?” We evaluate several concepts of variability in river ecosystems that are presented in this book: spatial and temporal scales, connectivity, and disturbance. Case studies of fish responses to temperature and hydrologic variability are used to show how this information can be applied to restoration plans. We also focus on the need to incorporate concepts of “recovery” into restoration strategies, and present several examples of recovery processes that occur following disturbances and potential restorative actions. Finally, we explore alternatives for evaluating and treating uncertainty in societal and policy arenas.


Author(s):  
Joseph Marlow ◽  
Abdul Haris ◽  
Jamal Jompa ◽  
Shinta Werorilangi ◽  
Tracey Bates ◽  
...  

AbstractCoral reefs have experienced extensive degradation across the world over the last 50 years as a result of a variety of stressors operating at a range of spatial and temporal scales. In order to assess whether declines are continuing, or if reefs are recovering, detailed baseline information is required from across wide spatial scales. Unfortunately, for some regions this information is not readily available, making future reef trajectories difficult to determine. Here we characterized the current benthic community state for coral reefs in the Wakatobi region of Indonesia, one of the most biodiverse marine regions in the world. We surveyed 10 reef sites (5, 10 and 15 m depth) to explore spatial variation in coral reef benthic communities and provide a detailed baseline. Previous data (2002–2011) were available for coral, sponges, algae and soft coral at six of our study sites. Using this information, we determined if any changes had occurred in dominance of these benthic groups. We found that benthic assemblage composition differed significantly over relatively small spatial scales (2–10 km) and hard coral cover was highly variable, ranging from 7–48% (average 19.5% ± 1.5 SE). While coral cover appears to have declined at all sites where data were available since 2002, we found little evidence for widespread increases in other benthic groups or regime shifts. Our study provides a comprehensive baseline dataset for the region that can be used in the future to determine rates of change in benthic communities.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 260
Author(s):  
Mario Raffa ◽  
Alfredo Reder ◽  
Marianna Adinolfi ◽  
Paola Mercogliano

Recently, the European Centre for Medium Range Weather Forecast (ECMWF) has released a new generation of reanalysis, acknowledged as ERA5, representing at the present the most plausible picture for the current climate. Although ERA5 enhancements, in some cases, its coarse spatial resolution (~31 km) could still discourage a direct use of precipitation fields. Such a gap could be faced dynamically downscaling ERA5 at convection permitting scale (resolution < 4 km). On this regard, the selection of the most appropriate nesting strategy (direct one-step against nested two-step) represents a pivotal issue for saving time and computational resources. Two questions may be raised within this context: (i) may the dynamical downscaling of ERA5 accurately represents past precipitation patterns? and (ii) at what extent may the direct nesting strategy performances be adequately for this scope? This work addresses these questions evaluating two ERA5-driven experiments at ~2.2 km grid spacing over part of the central Europe, run using the regional climate model COSMO-CLM with different nesting strategies, for the period 2007–2011. Precipitation data are analysed at different temporal and spatial scales with respect to gridded observational datasets (i.e., E-OBS and RADKLIM-RW) and existing reanalysis products (i.e., ERA5-Land and UERRA). The present work demonstrates that the one-step experiment tendentially outperforms the two-step one when there is no spectral nudging, providing results at different spatial and temporal scales in line with the other existing reanalysis products. However, the results can be highly model and event dependent as some different aspects might need to be considered (i.e., the nesting strategies) during the configuration phase of the climate experiments. For this reason, a clear and consolidated recommendation on this topic cannot be stated. Such a level of confidence could be achieved in future works by increasing the number of cities and events analysed. Nevertheless, these promising results represent a starting point for the optimal experimental configuration assessment, in the frame of future climate studies.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kuang-Yu Chang ◽  
William J. Riley ◽  
Sara H. Knox ◽  
Robert B. Jackson ◽  
Gavin McNicol ◽  
...  

AbstractWetland methane (CH4) emissions ($${F}_{{{CH}}_{4}}$$ F C H 4 ) are important in global carbon budgets and climate change assessments. Currently, $${F}_{{{CH}}_{4}}$$ F C H 4 projections rely on prescribed static temperature sensitivity that varies among biogeochemical models. Meta-analyses have proposed a consistent $${F}_{{{CH}}_{4}}$$ F C H 4 temperature dependence across spatial scales for use in models; however, site-level studies demonstrate that $${F}_{{{CH}}_{4}}$$ F C H 4 are often controlled by factors beyond temperature. Here, we evaluate the relationship between $${F}_{{{CH}}_{4}}$$ F C H 4 and temperature using observations from the FLUXNET-CH4 database. Measurements collected across the globe show substantial seasonal hysteresis between $${F}_{{{CH}}_{4}}$$ F C H 4 and temperature, suggesting larger $${F}_{{{CH}}_{4}}$$ F C H 4 sensitivity to temperature later in the frost-free season (about 77% of site-years). Results derived from a machine-learning model and several regression models highlight the importance of representing the large spatial and temporal variability within site-years and ecosystem types. Mechanistic advancements in biogeochemical model parameterization and detailed measurements in factors modulating CH4 production are thus needed to improve global CH4 budget assessments.


2012 ◽  
Vol 5 (1) ◽  
pp. 223-230 ◽  
Author(s):  
S. Saux Picart ◽  
M. Butenschön ◽  
J. D. Shutler

Abstract. Complex numerical models of the Earth's environment, based around 3-D or 4-D time and space domains are routinely used for applications including climate predictions, weather forecasts, fishery management and environmental impact assessments. Quantitatively assessing the ability of these models to accurately reproduce geographical patterns at a range of spatial and temporal scales has always been a difficult problem to address. However, this is crucial if we are to rely on these models for decision making. Satellite data are potentially the only observational dataset able to cover the large spatial domains analysed by many types of geophysical models. Consequently optical wavelength satellite data is beginning to be used to evaluate model hindcast fields of terrestrial and marine environments. However, these satellite data invariably contain regions of occluded or missing data due to clouds, further complicating or impacting on any comparisons with the model. This work builds on a published methodology, that evaluates precipitation forecast using radar observations based on predefined absolute thresholds. It allows model skill to be evaluated at a range of spatial scales and rain intensities. Here we extend the original method to allow its generic application to a range of continuous and discontinuous geophysical data fields, and therefore allowing its use with optical satellite data. This is achieved through two major improvements to the original method: (i) all thresholds are determined based on the statistical distribution of the input data, so no a priori knowledge about the model fields being analysed is required and (ii) occluded data can be analysed without impacting on the metric results. The method can be used to assess a model's ability to simulate geographical patterns over a range of spatial scales. We illustrate how the method provides a compact and concise way of visualising the degree of agreement between spatial features in two datasets. The application of the new method, its handling of bias and occlusion and the advantages of the novel method are demonstrated through the analysis of model fields from a marine ecosystem model.


2017 ◽  
Vol 18 (5) ◽  
pp. 1227-1245 ◽  
Author(s):  
Edwin Sumargo ◽  
Daniel R. Cayan

Abstract This study investigates the spatial and temporal variability of cloudiness across mountain zones in the western United States. Daily average cloud albedo is derived from a 19-yr series (1996–2014) of half-hourly Geostationary Operational Environmental Satellite (GOES) images. During springtime when incident radiation is active in driving snowmelt–runoff processes, the magnitude of daily cloud variations can exceed 50% of long-term averages. Even when aggregated over 3-month periods, cloud albedo varies by ±10% of long-term averages in many locations. Rotated empirical orthogonal functions (REOFs) of daily cloud albedo anomalies over high-elevation regions of the western conterminous United States identify distinct regional patterns, wherein the first five REOFs account for ~67% of the total variance. REOF1 is centered over Northern California and Oregon and is pronounced between November and March. REOF2 is centered over the interior northwest and is accentuated between March and July. Each of the REOF/rotated principal components (RPC) modes associates with anomalous large-scale atmospheric circulation patterns and one or more large-scale teleconnection indices (Arctic Oscillation, Niño-3.4, and Pacific–North American), which helps to explain why anomalous cloudiness patterns take on regional spatial scales and contain substantial variability over seasonal time scales.


2021 ◽  
pp. 527-553
Author(s):  
Agnes Zolyomi

AbstractPolicy-makers define our lives to a great extent, and are therefore the people everybody wants to talk to. They receive hundreds of messages in various forms day-by-day with the aim of making them decide for or against something. They are in an especially difficult situation as regards the so-called “wicked” or “diffuse” problems such as climate change and biodiversity loss (Millner and Olivier, 2015; Sharman and Mlambo, 2012; Zaccai and Adams, 2012). These problems are limitedly tackled at the policy level despite their major socio-economic and environmental implications, which is often explained by their complexity with a sense of remoteness of effects (Cardinale et al., 2012; WWF, 2018). Communicating advocacy or scientific messages of biodiversity is therefore both a challenge and an under-researched topic (Bekessy et al., 2018; Posner et al., 2016; Primmer et al., 2015; Wright et al., 2017), where both social and natural sciences and both scientists and practitioners are needed to contribute (Ainscough et al., 2019). In order to be successful in delivering messages, communication not only needs to be self-explanatory and easy to consume but novel as well. It additionally helps if the message arrives in a more extraordinary format to draw even more attention. Based on experiences drawn from a conservation and advocacy NGO’s work, this chapter will divulge various socio-economic theories about creative methods, communication, and influencing decision-makers through a campaign fighting for the preservation of key nature legislation. It will be demonstrated how different EU policy-makers, including representatives of the European Commission and Members of the European Parliament, the general public, and other stakeholders, were addressed with various messages and tools (e.g., short films, social media campaigns, fact sheets, involvement of champions). In addition to other key factors such as public support, knowledge of the target audience and political context, the probable impacts and limitations of these messages will also be elaborated. The relevance to the integration and employment of better socio-economic theories into improving communication is straightforward. It is crucial to tailor-make future advocacy work of “wicked problems” such as biodiversity loss and climate change, since these are not usually backed up by major lobby forces and are, therefore, financed inadequately compared to their significance. Understanding the way in which policy-makers pick up or omit certain messages, as well as what framing, methods and channels are the most effective in delivering them to the policy-makers, is pivotal for a more sustainable future.


2021 ◽  
Vol 18 (179) ◽  
pp. 20210194
Author(s):  
Raphaël Nussbaumer ◽  
Silke Bauer ◽  
Lionel Benoit ◽  
Grégoire Mariethoz ◽  
Felix Liechti ◽  
...  

To understand the influence of biomass flows on ecosystems, we need to characterize and quantify migrations at various spatial and temporal scales. Representing the movements of migrating birds as a fluid, we applied a flow model to bird density and velocity maps retrieved from the European weather radar network, covering almost a year. We quantified how many birds take-off, fly, and land across Western Europe to (1) track bird migration waves between nights, (2) cumulate the number of birds on the ground and (3) quantify the seasonal flow into and out of the study area through several regional transects. Our results identified several migration waves that crossed the study area in 4 days only and included up to 188 million (M) birds that took-off in a single night. In spring, we estimated that 494 M birds entered the study area, 251 M left it, and 243 M birds remained within the study area. In autumn, 314 M birds entered the study area while 858 M left it. In addition to identifying fundamental quantities, our study highlights the potential of combining interdisciplinary data and methods to elucidate the dynamics of avian migration from nightly to yearly time scales and from regional to continental spatial scales.


Sign in / Sign up

Export Citation Format

Share Document