scholarly journals Global Warming Problem and Impact of Power Electronics

Author(s):  
Dipti Mayee Majhi ◽  
D. Hota ◽  
L. Nanda

Global energy consumption is increasing at a dramatic rate due to the increase in the world’s population and the quest for improvement of living standards. Most of our energy comes from fossil fuels which cause the problem of global warming due to the emission of greenhouse gases (GHG). As a result, there are many harmful effects such as rise in sea level, drought in tropical regions near the equator, an increase in hurricanes, tornadoes and floods, and the spread of disease. Renewable energy is the energy generated from natural resources such as solar heat and light, wind, rain, tides, waves, and geothermal heat, which are replenished naturally. This paper highlights in particular the impact of power electronics in solving or mitigating the global warming problem and supporting the generation of renewable energy.

2020 ◽  
Vol 17 (6) ◽  
pp. 2866-2868
Author(s):  
Andino Maseleno ◽  
Wahidah Hashim ◽  
Alicia Y. C. Tang ◽  
Moamin A. Mahmoud ◽  
Marini Othman

Environmental destruction that is marked by high CO2 level or greenhouse gas emissions due to excessive use of fossil fuels is a serious challenge that must be minimized immediately. One of the most prominent impact is the destruction of natural ecosystems such as forest fires due to very high temperature, rising sea level, flash flood, melting of iceberg in the north and south poles and uncertain natural climates. From the energy sector that contribute most to global warming is the power generation sector. Currently there are still many power plants that use fossil fuels such as petroleum and coal as the main source of turbine drive in generating electrical energy. The burning results certainly produce CO2 gas that contributes to increase levels of global warming. In response to the crucial issue, developed countries make an effort to reduce the impact of greenhouse gases by conducting research and utilization of renewable energy as an environmentally friendly source of energy such as wind energy and solar energy. Renewable energy is capable of generating electrical energy without generating and increasing greenhouse gases. Current renewable energy utilization trends continue to increase which contributes to the birth of the smart grid concept. So the introduction of smart grid technology is a necessity to reduce the impact of global warming while encouraging efficiency, reliability and effective governance in the supply of electrical energy.


2020 ◽  
Vol 3 (2) ◽  
Author(s):  
Romdhane Ben Slama

The global warming which preoccupies humanity, is still considered to be linked to a single cause which is the emission of greenhouse gases, CO2 in particular. In this article, we try to show that, on the one hand, the greenhouse effect (the radiative imprisonment to use the scientific term) took place in conjunction with the infrared radiation emitted by the earth. The surplus of CO2 due to the combustion of fossil fuels, but also the surplus of infrared emissions from artificialized soils contribute together or each separately,  to the imbalance of the natural greenhouse effect and the trend of global warming. In addition, another actor acting directly and instantaneously on the warming of the ambient air is the heat released by fossil fuels estimated at 17415.1010 kWh / year inducing a rise in temperature of 0.122 ° C, or 12.2 ° C / century.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4447
Author(s):  
Hokey Min ◽  
Yohannes Haile

With a growing demand for safe, clean, and affordable energy, countries across the world are now seeking to create and rapidly develop renewable energy (RE) businesses. The success of these businesses often hinges on their ability to translate RE into sustainable value for energy consumers and the multiple stakeholders in the energy industry. Such value includes low production costs due to an abundance of natural resources (e.g., wind, water, sunlight), and public health benefits from reduced environmental pollution. Despite the potential for value creation, many RE businesses have struggled to create affordable energy as abundant as that which is produced by traditional fossil fuels. The rationale being that traditional RE sources emanating from natural resources tend to rely on unpredictable weather conditions. Therefore, to help RE businesses deliver sustainable value, we should leverage disruptive innovation that is less dependent on natural resources. This paper is one of the first attempts to assess the impact of disruptive innovation on RE business performances based on the survey data obtained from multiple countries representing both emerging and developed economies.


Energies ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 80 ◽  
Author(s):  
Ricardo Ramírez-Villegas ◽  
Ola Eriksson ◽  
Thomas Olofsson

The aim of this study is to assess how the use of fossil and nuclear power in different renovation scenarios affects the environmental impacts of a multi-family dwelling in Sweden, and how changes in the electricity production with different energy carriers affect the environmental impact. In line with the Paris Agreement, the European Union has set an agenda to reduce greenhouse gas emissions by means of energy efficiency in buildings. It is estimated that by the year 2050, 80% of Europe’s population will be living in buildings that already exist. This means it is important for the European Union to renovate buildings to improve energy efficiency. In this study, eight renovation scenarios, using six different Northern European electricity mixes, were analyzed using the standard of the European Committee for Standardization for life cycle assessment of buildings. This study covers all life cycle steps from cradle to grave. The renovation scenarios include combinations of photovoltaics, geothermal heat pumps, heat recovery ventilation, and improvement of the building envelope. The results show that while in some electricity mixes a reduction in the global warming potential can be achieved, it can be at the expense of an increase in radioactive waste production, and, in mixes with a high share of fossil fuels, the global warming potential of the scenarios increases with time, compared with that of the original building. It also shows that in most electricity mixes, scenarios that reduce the active heat demand of the building end up in reducing both the global warming potential and radioactive waste, making them less sensitive to changes in the energy system.


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1116 ◽  
Author(s):  
Aynur Kazaz ◽  
Seyda Adiguzel Istil

Global warming has been on the agenda over the past few years. Solutions to global warming and energy efficiency problems have brought with them the need for green building market. Leadership in Energy and Environmental Design (LEED) is a certification system regulating the compliance of green buildings to certain standards and is essential for construction projects focusing on sustainability and innovation. This study investigates the effects of sunshine duration on construction projects reducing annual electricity consumption and increasing renewable energy production. In this study, the effects of sunshine duration times on construction projects are located in different cities in Turkey which has gained point from LEED BD+C (NC) (LEED, Building Design + Construction: New Construction) certificate were analyzed with the help of getting the impact of annual electricity consumption and renewable energy production rates. It was our aim that the results will be used for construction projects in compliance with the “Energy and Atmosphere” category of the LEED BD+C certification system.


2020 ◽  
Vol 12 (4) ◽  
pp. 1595 ◽  
Author(s):  
Aisha Al-Rumaihi ◽  
Gordon McKay ◽  
Hamish R. Mackey ◽  
Tareq Al-Ansari

Food waste is a significant contributor to greenhouse gas emissions (GHG) and therefore global warming. As such, the management of food waste can play a fundamental role in the reduction of preventable emissions associated with food waste. In this study, life cycle assessment (LCA) has been used to evaluate and compare the environmental impact associated with two composting techniques for treating food waste using SimaPro software; windrow composting and the hybrid anaerobic digestion (AD) method. The study, based on a 1 tonne of food waste as a functional unit for a case study in the State of Qatar, concludes that anaerobic digestion combined composting presents a smaller environmental burden than windrow composting. The majority of the emissions generated are due to the use of fossil fuels during transportation, which correspond to approximately 60% of the total impact, followed by the impact of composting with 40% of the impact especially in terms of global warming potential. Environmental assessment impacts were the highest in windrow composting for the acidification impact category (9.39 × 10 − 1 kg SO2 eq). While for AD combined composting the impact was highest for the human toxicity impact category (3.47 × 10 kg 1,4 − DB eq).


2019 ◽  
Vol 102 (2) ◽  
pp. 127-140 ◽  
Author(s):  
Yuliana de Jesus Acosta-Silva ◽  
Irineo Torres-Pacheco ◽  
Yasuhiro Matsumoto ◽  
Manuel Toledano-Ayala ◽  
Genaro Martín Soto-Zarazúa ◽  
...  

The growing demand for food and the unstable price of fossil fuels has led to the search for environmentally friendly sources of energy. Energy is one of the largest overhead costs in the production of greenhouse crops for favorable climate control. The use of wind–solar renewable energy system for the control of greenhouse environments reduces fuel consumption and so enhances the sustainability of greenhouse production. This review describes the impact of solar–wind renewable energy systems in agricultural greenhouses.


Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3455
Author(s):  
Jean-Michel Clairand ◽  
Carlos Álvarez-Bel ◽  
Javier Rodríguez-García ◽  
Guillermo Escrivá-Escrivá

Isolated microgrids, such as islands, rely on fossil fuels for electricity generation and include vehicle fleets, which poses significant environmental challenges. To address this, distributed energy resources based on renewable energy and electric vehicles (EVs) have been deployed in several places. However, they present operational and planning concerns. Hence, the aim of this paper is to propose a two-level microgrid problem. The first problem considers an EV charging strategy that minimizes charging costs and maximizes the renewable energy use. The second level evaluates the impact of this charging strategy on the power generation planning of Santa Cruz Island, Galapagos, Ecuador. This planning model is simulated in HOMER Energy. The results demonstrate the economic and environmental benefits of investing in additional photovoltaic (PV) generation and in the EV charging strategy. Investing in PV and smart charging for EVs could reduce the N P C by 13.58%, but a reduction in the N P C of the EV charging strategy would result in up to 3.12%.


Author(s):  
A. L. Laganelli ◽  
C. Rodgers ◽  
W. E. Lear ◽  
P. L. Meitner

The impact on global warming of transportation and the infrastructure that supports it has been investigated over several decades. Anthropogenic heat and the generation of greenhouse gases from burning of fossil fuels and are major contributors to the warming process. An approach to mitigate these effects is discussed that considers semi-closed cycle gas turbine engines as a practical approach to slowing the release of greenhouse gases. Semi-closed cycle gas turbine engines have an inherent capability to reduce all regulated emissions while maintaining high efficiency, which in turn reduces CO2 emissions. With emerging technology development that includes higher component efficiencies, high temperature material development, improved control devices, and advanced combustor designs, aided by computational fluid dynamics, semi-closed cycle engines appear to have the potential to mitigate global warming with little economic or infrastructural impact. A specific semi-closed engine type is described, the high pressure recuperated turbine engine (HPRTE), along with the inherent mechanisms for control of NOx, CO, unburned hydrocarbons, and particulates. Results from a breadboard demonstration of the HPRTE are discussed, as well as emerging technologies which benefit this type of engine.


Author(s):  
Andrew Hugh MacDougall ◽  
Joeri Rogelj ◽  
Patrick Withey

Abstract Global agriculture is the second largest contributor to anthropogenic climate change after the burning of fossil fuels. However the potential to mitigate the agricultural climate change contribution is limited and needs to account for the imperative to supply food for the global population. Advances in microbial biomass cultivation technology have recently opened a pathway to growing substantial amounts of food for humans or livestock on a small fraction of the land presently used for agriculture. Here we investigate the potential climate change impacts of the end of agriculture as the primary human food production system. We find that replacing agricultural primary production with electrically powered microbial primary production before a low-carbon energy transition has been completed could redirect renewable energy away from replacing fossil fuels, potentially leading to higher total CO2 emissions. If deployed after a transition to renewable energy, the technology could alleviate agriculturally driven climate change. These diverging pathways originate from the reversibility of agricultural driven global warming and the irreversibility of fossil fuel CO2 driven warming. The range of reduced warming from the replacement of agriculture ranges from -0.22 [-0.29 to -0.04] ºC for Shared Socioeconomic Pathway (SSP)1-1.9 to -0.85 [-0.99 to -0.39]ºC for SSP4-6.0. For limited temperature target overshoot scenarios, replacement of agriculture could eliminate or reduce the need for active atmospheric CO2 removal to achieve the necessary peak and decline in global warming.


Sign in / Sign up

Export Citation Format

Share Document