scholarly journals Investigation of Swirl Stabilized CH4 Air Flame with Varied Hydrogen Content by using Computational Fluid Dynamics (CFD) to Study the Temperature Field and Flame Shape

2021 ◽  
Vol 11 (2) ◽  
pp. 6943-6948
Author(s):  
A. Bouziane ◽  
A. Alami ◽  
M. Zaitri ◽  
B. Bouchame ◽  
M. Bouchetara

In the current paper, numerical simulations of the combustion of turbulent CH4-H2 are presented employing the standard k-epsilon and the RNG k-epsilon for turbulence closure. The Fr-ED concept is carried out to account for chemistry/ turbulence interaction. The hydrogen content is varied in the fuel stream from 0% to 100%. The numerical solutions are validated by comparison with corresponding experimental data from the Combustion Laboratory of the University of Milan. The flow is directed radially outward. This method of fuel injection has been already been explored experimentally. The results show that the structure of the flame is described reasonably and both standard k-ɛ and RNG k- ɛ models can predict the flame shape. The general aspect of the temperature profiles is well predicted. The temperature profiles are indicating a different trend between CH4 and CH4/H2 fuel mixtures.

2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Christoph A. Schmalhofer ◽  
Peter Griebel ◽  
Manfred Aigner

The use of highly reactive hydrogen-rich fuels in lean premixed combustion systems strongly affects the operability of stationary gas turbines (GT) resulting in higher autoignition and flashback risks. The present study investigates the autoignition behavior and ignition kernel evolution of hydrogen–nitrogen fuel mixtures in an inline co-flow injector configuration at relevant reheat combustor operating conditions. High-speed luminosity and particle image velocimetry (PIV) measurements in an optically accessible reheat combustor are employed. Autoignition and flame stabilization limits strongly depend on temperatures of vitiated air and carrier preheating. Higher hydrogen content significantly promotes the formation and development of different types of autoignition kernels: More autoignition kernels evolve with higher hydrogen content showing the promoting effect of equivalence ratio on local ignition events. Autoignition kernels develop downstream a certain distance from the injector, indicating the influence of ignition delay on kernel development. The development of autoignition kernels is linked to the shear layer development derived from global experimental conditions.


1968 ◽  
Vol 35 (3) ◽  
pp. 588-595 ◽  
Author(s):  
S. Tsao

Equations governing the damped wave propagation along transmission lines are obtained from the Navier-Stokes and energy equations by making certain simplifying assumptions. The flow considered is essentially one-dimensional. However, radial variations of the velocity and temperature profiles must be considered, because the damping factor is directly dependent on them. The equations are integrated by numerical methods. A hypothetical case is computed as an example.


2020 ◽  
Vol 10 (20) ◽  
pp. 7032 ◽  
Author(s):  
Pucciarelli Andrea ◽  
Galleni Francesco ◽  
Moscardini Marigrazia ◽  
Martelli Daniele ◽  
Forgione Nicola

The paper presents the application of a coupling methodology between Computational Fluid Dynamics (CFD) and System Thermal Hydraulic (STH) codes developed at the University of Pisa. The methodology was applied to the CIRCE-HERO facility in order to reproduce the recently performed experimental conditions simulating a Protected Loss Of Flow Accident (PLOFA). The facility consists of an internal loop, equipped with a fuel pin simulator and a steam generator, and an external pool. In this coupling application, the System code RELAP5 is adopted for the simulation of the internal loop while the CFD code ANSYS Fluent is used for the sake of simulating the pool. The connection between the two addressed domains is provided at the inlet and outlet section of the internal loop; a thermal coupling is also performed in order to reproduce the observed thermal stratification phenomenon. The obtained results are promising and a good agreement was obtained for both the mass flow rates and temperature measurements. Capabilities and limitations of the adopted coupling technique are discussed in the present paper also providing suggestions for improvements and developments to be achieved in the frame of future applications.


2007 ◽  
Vol 129 (8) ◽  
pp. 1048-1057 ◽  
Author(s):  
Clarisse Fournier ◽  
Marc Michard ◽  
Françoise Bataille

Steady state similarity solutions are computed to determine the temperature profiles in a laminar channel flow driven by uniform fluid injection at one or two porous walls. The temperature boundary conditions are non-symmetric. The numerical solution of the governing equations permit to analyze the influence of the governing parameters, the Reynolds and Péclet numbers. For both geometries, we deduce a scaling law for the boundary layer thickness as a function of the Péclet number. We also compare the numerical solutions with asymptotic expansions in the limit of large Péclet numbers. Finally, for non-symmetric injection, we derive from the computed temperature profile a relationship between the Nusselt and Péclet numbers.


Author(s):  
Ivaylo Nedyalkov

Abstract Computational Fluid Dynamics (CFD) is widely used in industry but is not discussed sufficiently in undergraduate engineering education. In some cases, CFD is studied only from a mathematical perspective, focusing on computational partial differential equations, and in some cases it is introduced as a black-box tool. A hybrid CFD class was developed for undergraduate and graduate students at the University of New Hampshire, which combines the two approaches. The students are exposed to the mathematics and physics behind CFD, and they also utilize OpenFOAM — an open source CFD package — to work on practical problems. Since the code is open-source, the students are able to see and modify it. Although OpenFOAM is challenging due to the minimum graphical user interface, the code-base environment forces the students to learn what the code is doing. Sample assignments and project submissions from the students are presented in the paper.


Author(s):  
Ala R. Qubbaj

In this study, a co-flow methane/air diffusion flame at Reynolds number of 6000 was numerically simulated. The co-flow air and fuel streams were diluted with Nitrogen in the range of 0% to 20%. The thermal and composition fields in the far-burner reaction zone (close to the exhaust) were computed, and the effects of diluent’s addition to the air stream (simulating FGR) and to the fuel stream (simulating FIR) were investigated. The results show that air-side dilution is very effective up to 5% diluent’s addition. For which, 95% and 65% drops in NO and CO emissions, respectively, along with a 16% increase in temperature, are predicted compared to the baseline case (0% dilution). However, beyond 5% dilution, no effect (reaction) has been predicted. On the other hand, the fuel-side dilution has shown an effect for all simulated diluent’s addition (i.e. 0%–20%). However, that effect is not systematic neither on temperature, CO or NO concentrations. For a similar 5% dilution to the fuel-side, a 14% increase in NO and a 97% decrease in CO are predicted, along with a 5.6% increase in temperature. The simulated results revealed that air-side dilution (simulating FGR) has a dramatic greater effectiveness in NO reduction, whereas, fuel-side dilution (simulating FIR) has a greater effectiveness in CO reduction. Besides, the results suggest an important role for Prompt-NO Fenimore mechanism.


Author(s):  
Fuping Qian ◽  
Xingwei Huang ◽  
Mingyao Zhang

Numerical simulations of cyclones with various vortex finder dimensions and inlet section angles were performed to study the gas shortcut flow rate. The numerical solutions were carried out using commercial computational fluid dynamics (CFD) code Fluent 6.1. A prediction model of the gas shortcut flow rate was obtained based on response surface methodology by means of the statistical software program (Minitab V14). The results show that the length of the vortex finder insertion, the vortex finder diameter and the inlet section angle play an important role in influencing the gas shortcut flow rate. The gas shortcut flow rate decreases when increasing the inlet section angle, and increases when increasing the vortex finder diameter and decreasing the length of the vortex finder insertion. Compared with the effect of the length of the vortex finder insertion on the shortcut flow rate, the effect of the vortex finder diameter on the gas shortcut flow rate seems more pronounced. The effect of the vortex finder dimension on the gas shortcut flow rate is changed with the different inlet section angles, i.e., the effects of the vortex finder dimension of the conventional cyclone (the inlet section angle is 0º) on the gas shortcut flow rate is stronger than the cyclone with 30º and 45º inlet section angles.


2012 ◽  
Vol 5 (12) ◽  
pp. 2993-3006 ◽  
Author(s):  
P. E. Sheese ◽  
K. Strong ◽  
E. J. Llewellyn ◽  
R. L. Gattinger ◽  
J. M. Russell ◽  
...  

Abstract. The Optical Spectrograph and InfraRed Imaging System (OSIRIS) on the Odin satellite is currently in its 12th year of observing the Earth's limb. For the first time, continuous temperature profiles extending from the stratopause to the upper mesosphere have been derived from OSIRIS measurements of Rayleigh-scattered sunlight. Through most of the mesosphere, OSIRIS temperatures are in good agreement with coincident temperature profiles derived from other satellite and ground-based measurements. In the altitude region of 55–80 km, OSIRIS temperatures are typically within 4–5 K of those from the SABER, ACE-FTS, and SOFIE instruments on the TIMED, SciSat-I, and AIM satellites, respectively. The mean differences between individual OSIRIS profiles and those of the other satellite instruments are typically within the combined uncertainties and previously reported biases. OSIRIS temperatures are typically within 2 K of those from the University of Western Ontario's Purple Crow Lidar in the altitude region of 52–79 km, where the mean differences are within combined uncertainties. Near 84 km, OSIRIS temperatures exhibit a cold bias of 10–15 K, which is due to a cold bias in OSIRIS O2 A-band temperatures at 85 km, the upper boundary of the Rayleigh-scatter derived temperatures; and near 48 km OSIRIS temperatures exhibit a cold bias of 5–15 K, which is likely due to multiple-scatter effects that are not taken into account in the retrieval.


Sign in / Sign up

Export Citation Format

Share Document