scholarly journals Ara-C elicits apoptosis and inhibits proliferation of human lymphoblastic leukemia Nalm6 cell lines by down regulation of HDAC3 and DNMT3B and up regulation of DNMT3A

2021 ◽  
Vol 29 (1) ◽  
pp. 47-54
Author(s):  
Soudeh Moghadasi ◽  
Fatemeh Pourrajab ◽  
Seyedhossein Hekmatimoghaddam
Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2428-2428
Author(s):  
Shikiko Ueno ◽  
Jiayun Lu ◽  
He Jie ◽  
Ailing Li ◽  
XiaoXian Zhang ◽  
...  

Abstract Abstract 2428 SALL4 is a zinc-finger transcriptional factor and a member of the SALL gene family. It plays an essential role in the maintenance of ESC pluripotent and self-renewal properties by interacting with other two key regulators in ESCs, Nanog and Oct4. We previously have shown that stem cell factor SALL4 is aberrantly expressed in 75% of acute B-cell lymphoblastic leukemia (B-ALL). We have also shown that SALL4 is aberrantly expressed in AML, and down-regulation of SALL4 in AML leads to significant cell death. In this study, we focused on investigating the functional role of SALL4 in human B-ALL leukemogenesis. We first assessed the SALL4 mRNA level in four B-ALL cell lines (REH, Nalm6, 697, Blin-1) and five primary patient samples by qRT-PCR. We observed SALL4 mRNA in these four cell lines increased when compared to normal human CD34 negative BM cells. Moreover 4 of 5 primary samples showed high level expression of SALL4, suggesting that SALL4 might play a role in B-ALL pathogenesis. Then, we selected a SALL4 expressing B-ALL cell line (REH and Nalm6) and attenuated SALL4 expression through GFP-labeled shRNA approach in these cell lines. We monitored the growth of SALL4 knockdown and control REH and Nalm6 cells through MTS assay. SALL4 knockdown cells had a decreased growth rate compared to that of the control cells. We also stained SALL4 knockdown and control cells with Annexin V and 7-AAD by flow cytometric quantitation of apoptotic cells. The percentages of apopotic cells in SALL4 knockdown cells were much higher than these in controls. These data demonstrated that inhibition of SALL4 in REH cells and Nalm6 cells led to reduced proliferation and increased apoptosis. We then examined the oncogenesis ability of SALL4 knockdown REH cells in a mouse xenotransplantation model. SALL4 knockdown or control REH cells were injected intravenously into immunodeficient mice. All the recipients succumbed to fatal leukemia within 4 to 6 weeks post transplantation. In both BM and spleen of SALL4 knockdown recipients the engrafted proportion of GFP+ cells was significantly decreased compared to the initial donor cells. Whereas, in both BM and spleen control recipients the percentage of GFP+ REH cells engrafted was similar to that of initial donor cells. This suggests that down-regulation of SALL4 is essential for B-ALL engraftment. To rule out the observed engraftment defect was due to homing, we next performed homing assay. SALL4 knockdown or control cells were injected intravenously into immunodeficient mice as well. Three hours of the injection, mice were sacrificed and analyzed the percentage of GFP+ cells in BM and spleen by flow cytometry. There was no difference among SALL4 knockdown and the control. Furthermore, we performed gene expression profiling on apoptosis-related genes in SALL4 knockdown and control REH cells. The result showed that in SALL4-knockdown REH, TNF mediated cell apoptosis pathways was up-regulated as well as multiple caspase members. The expression of Caspase 3, Caspase 8, FADD was up-regulated in both SALL4 knockdown REH and Nalm6 when compared to these controls, and was verified by real time RT-PCR. This suggests that SALL4 could repress apoptosis through the TNF signal pathway. In summary, we report a novel SALL4/TNF pathway in maintaining cell survival in B-ALL. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1399-1399 ◽  
Author(s):  
Ekaterina Kim ◽  
Stefan Koehrer ◽  
Nathalie Y. Rosin ◽  
Zhiqiang Wang ◽  
Deborah A. Thomas ◽  
...  

Abstract Introduction Bruton′s tyrosine kinase (BTK) is a member of TEC family of non-receptor tyrosine kinases. BTK is mostly expressed in hematopoietic cell lineages, except in T cells. It plays a particularly important role in B cell development and is present at almost all stages of their maturation, disappearing only in plasma cells. BTK is an essential kinase downstream of pre-B cell (pre-BCR) and B cell receptors (BCR) promoting proliferation, differentiation and survival of B cells. Methods Surface protein expression in B-cell acute lymphoblastic leukemia (B-ALL) cell lines was assessed by flow cytometry using PE conjugated anti-CD179a, anti-CD179b (BioLegend) and anti-CD22 (BD Pharmingen). To investigate effects of the BTK inhibitor ibrutinib (PCI-32765) on constitutive pre-BCR signaling RCH-ACV cells were pretreated with 0.1% DMSO or increasing concentrations of the drug (0.0001, 0.001, 0.01, 0.1, 1.0 μM) for 1 hour and lysed in RIPA buffer. To induce pre-BCR signaling in pretreated cells they were incubated with 10 μg/ml of anti-Igμ for 30 minutes. Intracellular calcium mobilization was measured by using the fluorogenic probe Fluo3-AM (Invitrogen). RCH-ACV cells pretreated with 1 μM ibrutinib for 72 hours were subjected to gene expression profile analysis on HT-12 v4 Expression BeadChip (Illumina). Results Previously we explored the effects of ibrutinib in B-ALL cell lines and primary samples. Ibrutinib induced only low levels of apoptosis in B-ALL cell lines, but significantly inhibited their proliferation. RCH-ACV and SMS-SB were the most sensitive cell lines with half maximal inhibitory concentrations of ibrutinib of 0.6 and 0.4 μM found in XTT cell proliferation assay. Interestingly, both cell lines expressed a pre-B cell immunophenotype with pre-BCR surface expression. Next, we explored the effect of BTK inhibition on constitutive and induced pre-BCR signaling. Treatment of RCH-ACV cells with varying concentrations of ibrutinib resulted in decreased levels of pBTK, pAKT, pS6 and pSYK. The lowest concentration of ibrutinib needed to observe complete disappearance of pBTK (Y223) and any reduction of other phospho-proteins was 10 nM, however the maximum effect was achieved with 1 μM ibrutinib. Upon pre-BCR crosslinking with anti-Igμ elevated levels of pSYK, pBTK, pAKT, pS6 and pERK were detected in RCH-ACV. Pretreatment of the cells with ibrutinib greatly reduced this effect. As calcium mobilization is another important indicator of B cell activation upon pre-BCR stimulation, we evaluated ibrutinib in calcium flux assays. Pretreatment with 1 μM ibrutinib effectively abrogated anti-Igμ induced calcium flux in pre-B ALL cell lines. Gene expression profile analysis of RCH-ACV cells after 72 hours of incubation with 1 μM ibrutinib showed down-regulation of pre-BCR related genes such as PTPN6 (SHP-1), Bcl6 and CD22. Flow cytometry analysis confirmed the down-regulation of the inhibitory co-receptor CD22 in pre-B ALL cell lines after incubation with ibrutinib. The down-regulation of SHP-1 protein was verified by western blotting. Conclusions The results indicate that ibrutinib reduces the pre-B ALL cell proliferation by inhibiting constitutive and/or induced pre-BCR signaling. Observed down-regulation of CD22 and SHP-1, known negative regulators of BCR signaling, suggests a possible mechanism of cell adaptation to the presence of the BTK inhibitor. Taken together, these data provide a rationale for clinical testing of ibrutinib in B-ALL with active pre-BCR signaling. Disclosures: O'Brien: Pharmacyclics: Research Funding. Buggy:Pharmacyclics: Employment. Burger:Pharmacyclics: Consultancy, Membership on an entity’s Board of Directors or advisory committees, Research Funding.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1438-1438 ◽  
Author(s):  
Xiaoyan Huang ◽  
Jennifer Proctor ◽  
Yaling Yang ◽  
Xiuhua Gao ◽  
Weihong Zhang ◽  
...  

Abstract Phosphoinositide-3 kinases (PI3Ks) are key cellular signaling proteins that act as a central node for relaying signals from cell surface receptors to downstream mediators, such as AKT. The PI3K-δ and PI3K-γ isoforms are preferentially expressed in normal and malignant leukocytes where they play critical roles in cell differentiation, migration, and proliferation. Constitutive activity of the PI3K pathway is common in T-cell acute lymphoblastic leukemia (T-ALL) and frequently involves the deletion of PTEN, the phosphatase that negatively regulates the PI3K pathway. An important role for the PI3K-δ and PI3K-γ isoforms has been demonstrated in the Pten-deleted genetically engineered murine model of T-ALL in conjunction with PI3K-δ and/or PI3K-γ gene knock outs (Subramanian et al, Cancer Cell, 2012). IPI-145 is a potent inhibitor of PI3K-δ and PI3K-γ currently being studied in a Phase 1 trial (IPI-145-02) in patients with advanced hematologic malignancies, including T-ALL (ClinicalTrials.gov NCT01476657). We performed in vitro studies to address the sensitivity of human and murine T-ALL cell lines to IPI-145 and to additional PI3K inhibitors with defined isoform selectivity. The human T-ALL cells examined were from cell lines that lack PTEN protein expression (Loucy, MOLT-4, CCRF-CEM, CEM/C2, p12 Ichikawa, and Karpas-45) and cell lines that express PTEN protein (MOLT13 and MOLT16). In addition, two murine cell lines derived from a Pten-deleted model of T-ALL (LPN049 and LPN236) were studied. The expression levels of class I PI3K isoforms were determined by western blotting and quantitative RT-PCR, which revealed varying levels of protein and RNA expression across the cell lines. In vitro treatment of human T-ALL cells with IPI-145 resulted in variable degrees of growth inhibition, with the PTEN-deficient Loucy cell line demonstrating the greatest sensitivity with an IC50 of 245 nM. In the cell lines tested, growth inhibition to IPI-145 was only seen in PTEN-deficient human cell lines, whereas all PTEN-expressing human T-ALL cell lines were resistant to IPI-145 (IC50 > 10 uM). However, not all PTEN-deficient human T-ALL cells demonstrated sensitivity to IPI-145 (e.g., CEM/C2), indicating that loss of PTEN does not confer sensitivity to PI3K inhibition in all settings. Inhibition of phospho-AKT (pAKT) correlated with growth inhibition, with an IC50 of 286 nM in the Loucy cell line. Studies to evaluate the mechanism of growth inhibition revealed that IPI-145 treatment resulted in apoptosis of sensitive cells as measured by 7-AAD and Annexin V staining. Cell lines derived from the Pten-deleted murine T-ALL model were also sensitive to IPI-145 with IC50s in the 300-600 nM range as measured by MTT assay. In addition, IPI-145 led to apoptosis, as measured by cleaved Caspase 3 and 7-AAD/Annexin V. Interestingly, Pten-deleted murine T-ALL cell lines showed down-regulation of pAKT and c-MYC expression with IPI-145 in a dose responsive manner that corresponded with increasing activated Caspase-3 expression. In NOTCH1-expressing murine T-ALL cell lines, down regulation of NOTCH1 and activated NOTCH1 was also observed in parallel with c-MYC down-regulation. To explore further the individual contributions of the varying PI3K isoforms on T-ALL cell growth, the effect of IPI-145 on tumor cell growth was compared with PI3K-δ, PI3K-δ,γ, and PI3K-β selective compounds in the Loucy PTEN-deficient T-ALL cell line. These experiments support an anti-leukemic effect for both PI3K-δ and PI3K-γ inhibition and indicate that the greatest effect is seen with combined PI3K-δ and PI3K-γ inhibition. A role for PI3K-β in T-ALL cell survival was not observed. Evaluation of the in vivo activity of IPI-145 on Loucy xenografts, as well as PTEN-expressing MOLT-13 xenografts, is ongoing. Together, these data provide a strong rationale for combined targeted inhibition of PI3K-δ and PI3K-γ in T-ALL. Disclosures: Huang: Infinity Pharmaceuticals, Inc.: Research Funding. Proctor:Infinity Pharmaceuticals, Inc.: Employment. Yang:Infinity Pharmaceuticals, Inc.: Research Funding. Gao:Infinity Pharmaceuticals, Inc.: Research Funding. Zhang:Infinity Pharmaceuticals, Inc.: Research Funding. Huang:Infinity Pharmaceuticals, Inc.: Research Funding. Changelian:Infinity Pharmaceuticals, Inc.: Employment. Kutok:Infinity Pharmaceuticals, Inc.: Employment. McGovern:Infinity Pharmaceuticals, Inc.: Employment. You:Infinity Pharmaceuticals, Inc.: Research Funding.


Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 716-716
Author(s):  
Sujan Piya ◽  
Hong Mu ◽  
Seemana Bhattacharya ◽  
Teresa McQueen ◽  
Richard E Davis ◽  
...  

Abstract Background: Salvage options for patients with relapsed T cell acute lymphoblastic leukemia (T-ALL) are limited, with less than 25% of these patients achieving second remission 1, 2. 70% of T-ALL cases have activating mutations of the NOTCH1 pathway, which transcriptionally activates MYC by binding to its `superenhancer' region 3, 4. Other deregulated oncogenic pathways in T-ALL include PI3K/Akt, the anti-apoptotic Bcl-2 family, and CDKN2A/2B cell cycle regulators 5, 6. The NOTCH1-MYC regulatory circuit is an attractive therapeutic target, but clinical development of gamma-secretase inhibitors (GSI) to target NOTCH1 has been limited by 'on target' toxicities. A better target may be BRD4, a critical component of superenhancer complexes that binds to acetylated histone (3 and 4) and drives NOTCH1 mediated MYC transcription7. ARV-825 is a hetero-bifunctional PROteolysis TArgeting Chimera (PROTAC) that has 3 components: a thienodiazepine-based BRD4 ligand, a linker arm, and a cereblon-binding ligand. ARV-825 recruits BRD4 to the E3 ubiquitin ligase cereblon and leads to efficient and sustained degradation of BRD4, resulting in down-regulation of MYC. Methods: We investigated the effectiveness of ARV-825 against T-ALL cell lines, including GSI-resistant lines. Since microenvironmental signals are critical for the survival of T-ALL, we specifically tested the impact of BRD4 degradation on CD44/CD44v, which integrates cell-extrinsic microenvironmental signals and is part of cysteine transporter that maintains low intra-cellular reactive oxygen species (ROS), necessary for T-ALL survival and the persistence of disease. We also examined the anti-leukemic effect of ARV-825 in a T-ALL patient-derived xenograft (PDX) mouse model of disseminated leukemia with a constitutively active NOTCH1 mutation. Results: The IC50s for all tested T-ALL cell lines at 72 hours were in the low nanomolar range (< 50 nM). ARV-825 leads to sustained degradation of BRD4 and down-regulation of its transcriptional targets MYC, Bcl-2 and Bcl-XL and inhibits cell proliferation and induces apoptosis in GSI-sensitive (HPB-ALL, KOPT1) and GSI-resistant (MOLT4, SUPT1) cell lines. Mass cytometry based proteomic analysis (CyTOF) and immunoblotting showed that ARV-825 down-regulated cell intrinsic oncogenic molecules: transcription factors Myc and NFkB, cell cycle regulator CDK6, activated PI3K/Akt, and anti-apoptotic Bcl2 family proteins. In addition ARV-825 down regulated two key molecules involved in leukemia-stroma interaction; CD44 (Fig. 1), and CD98, a component of amino acid transporters xCT, LAT1 and 2, both essential in regulation of oxidative stress. Quantitative PCR and immunoblotting analysis confirmed the transcriptional down regulation of total CD44 and CD44 variants 8-10 (2-fold change treated vs . untreated). As a functional correlate of down-regulation of CD98/CD44/CD44v, flow cytometry confirmed increased intracellular ROS generation (Fig. 2). Finally, in a PDX mouse model of human T-ALL, ARV-825 treatment resulted in lower leukemia burden (confirmed by flow cytometry for human CD45+ cells in bone marrow) and better survival compared to vehicle-treated control mice (p=0.002) (Fig.3). Reference: 1. Marks DI, Rowntree C. Management of adults with T-cell lymphoblastic leukemia. Blood 2017; 129(9): 1134-1142. 2. Litzow MR, Ferrando AA. How I treat T-cell acute lymphoblastic leukemia in adults. Blood 2015; 126(7): 833-41. 3. Sanchez-Martin M, Ferrando A. The NOTCH1-MYC highway toward T-cell acute lymphoblastic leukemia. Blood 2017; 129(9): 1124-1133. 4. Demarest RM, Ratti F, Capobianco AJ. It's T-ALL about Notch. Oncogene 2008; 27(38): 5082-91. 5. Girardi T, Vicente C, Cools J, De Keersmaecker K. The genetics and molecular biology of T-ALL. Blood 2017; 129(9): 1113-1123. 6. Joshi I, Minter LM, Telfer J, Demarest RM, Capobianco AJ, Aster JC et al. Notch signaling mediates G1/S cell-cycle progression in T cells via cyclin D3 and its dependent kinases. Blood 2009; 113(8): 1689-98. 7. Loven J, Hoke HA, Lin CY, Lau A, Orlando DA, Vakoc CR et al. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell 2013; 153(2): 320-34. Disclosures Qian: 4Arvinas, LLC. New Haven, CT: Employment. Raina: 4Arvinas, LLC. New Haven, CT: Employment. McKay: 6 ImmunoGen, Inc.Waltham, MA: Employment. Kantarjian: Novartis: Research Funding; Amgen: Research Funding; Delta-Fly Pharma: Research Funding; Bristol-Meyers Squibb: Research Funding; Pfizer: Research Funding; ARIAD: Research Funding. Andreeff: Daiichi Sankyo: Consultancy.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 883-883 ◽  
Author(s):  
Azhar R. Hussain ◽  
Abdul K. Siraj ◽  
Pulicat S. Manogaran ◽  
Khawla S. Al-Kuraya ◽  
Shahab Uddin

Abstract Acute lymphoblastic leukemia (ALL) is the most common cancer of childhood resulting from the clonal proliferation of lymphoid precursors with arrested maturation. Chemotherapy can induce complete remission in more than 95% of cases of childhood ALL and achieve long-term survival in 70–80% of cases. However, ALL with the t(9:22) BCR-ABL translocation or Philadelphia chromosome (Ph1) are still highly resistant to chemotherapy from the onset. Thus, new therapeutic approaches are required to improve their prognosis. Characterization of the growth requirement of ALL cells suggest that these cancers are dependent on various cytokines via paracrine and/or autocrine mechanism in which the JAK family of proteins are closely implicated. Accordingly, tyrosine kinase inhibitors against JAKs are expected to become a new class of anti-tumor agents against these cancers. Curcumin has been shown to inhibit JAK-STAT pathway in a variety of hematological malignancies including multiple myeloma and primary effusion lymphomas. We therefore sought to determine whether curcumin suppresses the growth of acute lymphoblastic leukemia. We tested a panel of preB-ALL cell lines with various translocations after treatment with different doses of curcumin. The cell lines included REH (t12:21), RS4:11 (t4:11), 697 (t1:19) and SupB15(t9:22). Cell viability decreased in a concentration-dependent manner in 697, REH and RS4:11 with curcumin (0–40mM) whereas only minimal changes in viability was detected in SupB15. Curcumin induced apoptosis in all preB-ALL cell lines except SupB15 that was found to be refractory to curcumin treatment. Curcumin induced apoptosis via truncation of BID, loss of mitochondrial potential as determined by JC1 staining with subsequent release of cytochrome c from the mitochondria, and activation of caspase 3 and PARP. Curcumin treatment also caused the down-regulation of the IAPs, cIAP1 and XIAP. All these events occured in the sensitive cell lines 697, REH and RS4:11, however, in SupB15, curcumin failed to inhibit the expression of cIAP1 and XIAP and remained refractory to treatment. These results suggest that the IAPs may play an important role in curcumin induced apoptosis in preB-ALL cells. Altogether, our findings suggests a novel function for curcumin, acting as a growth suppressor of most preB-ALL cells and inducing apoptosis via down-regulation of IAPs. Therefore, curcumin may have a future therapeutic role in preB-ALL and possibly other malignancies.


2019 ◽  
Vol 8 ◽  
Author(s):  
Masoumeh Abedi Nejad ◽  
Mohsen Nikbakht ◽  
Masoomeh Afsa ◽  
Kianoosh Malekzadeh

Background: Acute lymphoblastic leukemia (ALL) is a highly prevalent pediatric cancer accounting for approximately 78% of leukemia cases in patients younger than 15 years old. Different studies have demonstrated that B-cell translocation gene 3 (BTG3) plays a suppressive role in the progress of different cancers. Genistein is considered a natural and biocompatible compound and a new anti-cancer agent. In this study, we evaluate the effect of genistein on BTG3 expression and proliferation of ALL cancer cells. Materials and Methods: ALL cell lines (MOLT4, MOLT17, and JURKAT) were cultured in standard conditions. Cytotoxicity of genistein was detected using MTT assay. The cells were treated with different concentrations of genistein (10, 25, 40, and 55μM) for 24, 48, and 72 hours, and then cell viability and growth rate were measured. The quantitative real-time polymerase chain reaction was applied to investigate the effect of genistein on BTG3 expression. Results: The percentage of vital cells treated with genistein significantly decreased compared to the non-treated cells, showed an inverse relationship with an increasing genistein concentration. The present study suggests a dose of 40μM for genistein as a potent anticancer effect. Genistein could elevate BTG3 for 1.7 folds in MOLT4 and JURKAT and 2.7 folds in MOLT17 cell lines at transcription level conveged with 60 to 90% reduction in the proliferation rate of cancer cells. Conclusion: Up-regulation of BTG3 as a tumor suppressor gene can be induced by genistein. It seems that BTG3 reactivation can be introduced as another mechanism of anti-proliferative effect of genistein and could be considered as a retardant agent candidate against hematopoietic malignancy.[GMJ. 2019;inpress:e1229]


2020 ◽  
Vol 17 (5) ◽  
pp. 640-654
Author(s):  
Hamidreza Akrami ◽  
Bibi Fatemeh Mirjalili ◽  
Omidreza Firuzi ◽  
Azadeh Hekmat ◽  
Ali Akbar Saboury ◽  
...  

Background: Chromene and anilinopyrimidine heterocyclics are attractive anticancer compounds that have inspired many researchers to design novel derivatives bearing improved anticancer activity. Methods: A series of pyrimidine-fused benzo[f]chromene derivatives 6a-x were synthesized as anticancer hybrids of 1H-benzo[f]chromenes and anilinopyrimidines. The inhibitory activity of the synthesized compounds 6a-x against cell viability of human chronic myelogenous leukemia (K562), human acute lymphoblastic leukemia (MOLT-4) and human breast adenocarcinoma (MCF-7) cell lines was evaluated using MTT assay. The interaction of the most promising compound with calf-thymus DNA was also studied using spectrometric titrations and Circular Dichroism (CD) spectroscopy. Results: Most compounds showed promising activity against tested cell lines. Among them, 2,4- dimethoxyanilino derivative 6g exhibited the best profile of activity against tested cell lines (IC50s = 1.6-6.1 μM) with no toxicity against NIH3T3 normal cell (IC50 >200 μM). The spectrometric studies exhibited that compound 6g binds to DNA strongly and may change DNA conformation significantly, presumably via a groove binding mechanism. Conclusion: The results of this study suggest that the prototype compound 6g can be considered as a novel lead compound for the design and discovery of novel anticancer agents.


BMC Urology ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Aldhabi Mokhtar ◽  
Chuize Kong ◽  
Zhe Zhang ◽  
Yan Du

Abstract Objectives The aim of this study was to investigate the effect of lncRNA-SNHG15 in bladder carcinoma using cell lines experiments and the relationship between clinical characteristics and lncRNA-SNHG15 expression was analyzed. Methods Bladder cancer tissues and near-cancer tissues were collected. The real-time PCR (RT-PCR) was used to detect the expression of lncRNA-SNHG15 in tissues and cell lines. The expression of lncRNA-SNHG15 was downregulated by interference (siRNA), as detected by RT-PCR, that was used to determine the efficiency of the interference. CCK-8 and Transwell assays were used to evaluate the effect of lncRNA-SNHG15 on the proliferation and invasion capability of bladder cancer cells. The t-test was used for Statistical analyses, which were carried out using the Statistical Graph pad 8.0.1.224 software. Result The expression of lncRNA-SNHG15 was up regulated in 5637, UMUC3 and T24 cell lines compared with corresponding normal controls (P < 0.05). Up regulation was positively related to tumor stage (P = 0.015). And tumor size (P = 0.0465). The down-regulation of lncRNA-SNHG15 with siRNA significantly inhibited UMUC3 and T24 cell proliferation and invasion. Conclusion This study showed that lncRNA-SNHG15 is overexpressed in bladder cancer tissues and (5637, UMUC3 T24) cell lines. Up regulation was positively related to tumor stage (P = 0.015), and tumor size (P = 0.0465). Down-regulation of lncRNA-SNHG15 by siRNA significantly inhibited UMUC3 and T24 cell proliferation and invasion, indicating a potential molecular target for future tumor targeted therapy.


Sign in / Sign up

Export Citation Format

Share Document