scholarly journals CO2 Corrosion of Carbon Steel: The Synergy of Chloride Ion Concentration and Temperature on Metal Penetration

CORROSION ◽  
10.5006/3583 ◽  
2020 ◽  
Vol 76 (11) ◽  
Author(s):  
Frederick Pessu ◽  
Richard Barker ◽  
Anne Neville

This paper investigates the synergy of chloride ion concentration and temperature on the general and pitting corrosion of carbon steel in CO2-saturated environments. Experiments were conducted over 168 h in different concentrations of NaCl brines (1 wt%, 3.5 wt%, and 10 wt%) and temperatures (30°C, 50°C, and 80°C) with the aim of elucidating the combined effect of changes in chloride ion concentration and temperature on overall metal degradation, taking into consideration general and pitting corrosion. This also includes a correlation with the formation and properties of FeCO3 corrosion products. Linear polarization resistance was implemented to monitor the electrochemical responses. Corrosion product characteristics and morphologies were studied through a combination of scanning electron microscopy and x-ray diffraction. Pitting corrosion evaluation was conducted through the application of 3D surface profilometry to study pit geometries such as the depth and diameter. The results show that general and pitting corrosion are strongly correlated to the synergistic effects of changing chloride ion concentration and temperature in carbon steel as a result of their combined influence on ferrite (Fe) dissolution and FeCO3 formation. This represents a paradigm shift from the already established mechanisms on chloride ion and temperature effects on passive alloys such as stainless steel. Increasing chloride ion concentration and temperature up to 10 wt% NaCl and 50°C to 80°C, respectively, is observed to increase the rate of Fe dissolution and formation of semiprotective FeCO3 corrosion products, leading to the increased manifestation and severity of pitting corrosion. The results also show that a “threshold chloride concentration” exists at 30°C, above which there is no significant increase in corrosion rate. However, such “threshold effects” were not observed at higher temperatures evaluated in the range of chloride concentration considered in this study.

2015 ◽  
Vol 98 ◽  
pp. 708-715 ◽  
Author(s):  
Samin Sharifi-Asl ◽  
Feixiong Mao ◽  
Pin Lu ◽  
Bruno Kursten ◽  
Digby D. Macdonald

CORROSION ◽  
1985 ◽  
Vol 41 (11) ◽  
pp. 665-675 ◽  
Author(s):  
J. R. Park ◽  
Z. Szklarska-Smialowska

Abstract Pitting corrosion of Inconel 600 was studied in aqueous sodium and cupric chloride solutions at 60 and 280 C. The pit nucleation potential, Enp, was evaluated in two different concentrations of sodium chloride. Enp decreased with increasing concentrations of the chloride ion and with temperature. On specimen surfaces exposed to cupric chloride solutions, pitting occurred at open circuit potentials nearly equal to or higher than the Enp determined by anodic polarization in 0.01 M NaCl solution. The number and size of the pits increased with increasing concentrations of cupric chloride and dissolved oxygen. On specimens partly covered with polytetrafluorethylene (PTFE) tape (i.e., in the presence of artificial crevices), pitting occurred more easily at low concentrations of CuCl2 (≤ 20 ppm CuCl2 in deaerated solutions at 280 C). Tubes covered with oxide films that formed during the operation of model boilers exhibited greater pitting resistance than tubes with clean surfaces at 280 C, but less resistance at 60 C. Corrosion products contained in the pits were enriched in chromium with small amounts of copper, sulfur, and chlorine. The composition of corrosion products covering the pits was similar to that in the pits, but with the additional enrichment of iron. Presumably, sulfur present in Inconel 600 as an impurity was significant in the pitting process. The probable mechanism of the processes leading to pitting of Inconel 600 tubing in high-temperature water is discussed.


2014 ◽  
Vol 711 ◽  
pp. 481-484
Author(s):  
Yu Chen ◽  
Jie Xu ◽  
Rong Gui Liu ◽  
Su Bi Chen ◽  
Yuan Gao

Based on the existing studies about chloride ion erosion in prestressed concrete structures, this paper intends to discuss the effects of the stress level and environment factors (including temperature and humidity, etc.) on chloride ion diffusion under marine atmosphere zone. The investigation from pre-stressed concrete crossbeams which service for 39 years in Lianyungang Port shows the chloride ion concentration distribution and chloride ion diffusion. According to the chloride ion concentration distribution, it finds that chloride ion concentration values in pre-concrete structures is Cmax,1> Cmax,2. In addition, the free chloride concentration distribution values go down smoothly after the second peak. Therefore, the result shows that the improved model can be used in marine atmosphere zone.


1995 ◽  
Vol 309 (3) ◽  
pp. 959-962 ◽  
Author(s):  
O Hofmann ◽  
G Carrucan ◽  
N Robson ◽  
T Brittain

The interactions of the three human embryonic haemoglobins with chloride ions have been investigated. Each of the three embryonic haemoglobins exhibits a unique pattern of oxygen-affinity-dependence on chloride ion concentration. Human embryonic haemoglobin Portland (zeta 2 gamma 2) is found to be completely insensitive to chloride ion concentration. Haemoglobin Gower I (zeta 2 gamma 2) shows a small concentration dependence, whilst haemoglobin Gower II (alpha 2 epsilon 2) exhibits a dependence approaching that of the adult protein. The degree of co-operativity for each protein is essentially chloride concentration independent. The chloride-dependent and -independent components of the alkaline Bohr effects have been measured for each of the embryonic haemoglobins and compared with that of the adult protein. Both the chloride-binding data and the Bohr effect have been analysed in terms of the recently developed allosteric model proposed by Perutz [Perutz, Fermi, Poyart, Pagnier and Kister (1993) J. Mol. Biol. 233, 536-545].


2011 ◽  
Vol 1 (1) ◽  
pp. 36-44 ◽  
Author(s):  
Sami M. Hamdan ◽  
Abdelmajid Nassar ◽  
Uwe Troeger

The Gaza Strip suffers from high pressure imposed on its water resources. There is a deficit of about 50 mm3 every year, which has led to a declination of groundwater level and deterioration of groundwater quality. New water resources are sought to fulfil the water deficit; among them is the artificial recharge of treated wastewater to groundwater. The impact of recharging partially treated wastewater in Gaza was tested through a pilot project implemented east of the existing wastewater treatment plant. The daily application of about 10,000 m3 of effluent to infiltration basins had an effect on the aquifer, which was monitored through the surrounding operating water wells over five years from 2000 until 2005. Although the monitored wells are operated for irrigation by farmers, impacts were clearly noticed. Groundwater levels improved and an increase in some areas of 0.6 m within three years was observed. The nitrate ion concentration also decreased in the groundwater due to nitrification processes. However, chloride ion, which indicates salinity, increased because the effluent has high chloride concentration. Boron levels increased in some areas to 0.5 mg/l, which could affect sensitive crops grown in the area.


Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2117
Author(s):  
Yinglong Liu ◽  
Pengzhen Lin ◽  
Junjun Ma

In order to study the durability degradation characteristics of concrete box girder under load and carbonation and chloride ion erosion, a scale model of concrete box girder was made for experimental research. According to the test results, the diffusion characteristics of chloride ions in the concrete box girder under the coupling effect of load and carbon dioxide were analyzed. By revising the calculation formula of the existing chloride ion concentration considering multiple factors, a calculation model of chloride ion concentration considering the influence of carbonation was proposed, and the test results were verified. The results show that the chloride concentration of the box girder on the same cross section is non-uniformly distributed due to the shear lag effect and the spatial structure. After considering the effect of carbonation, the difference rate of the improved model proposed in this paper is generally within 10%. Compared with the original model, the difference rate is reduced by a maximum of 19%.


2015 ◽  
Vol 1120-1121 ◽  
pp. 999-1002 ◽  
Author(s):  
Feng Jun Lang ◽  
Xian Qiu Huang ◽  
Tao Pang ◽  
Ying Ma ◽  
Peng Cheng ◽  
...  

The influence of inclusion on pitting corrosion of X80 pipeline steel was investigated by using electrochemical test and atomic force microscope. The results indicated that corrosion potential of X80 pipeline steel sample with higher grade inclusion was lower, and decreased significantly with chloride ion concentration increasing. Inclusion was not conducive to corrosion resistance of X80 pipeline steel. The way of X80 pipeline steel pitting corrosion was that pit formed at the inclusion dissolution, and grew to pitting. There were less corrosion products near the pit hole, forming a cathode ring.


CORROSION ◽  
1959 ◽  
Vol 15 (1) ◽  
pp. 48-54 ◽  
Author(s):  
N. D. GREENE ◽  
M. G. FONTANA

Abstract By means of a unique artificial pit specimen, pit growth on 18 percent chromium-8 percent nickel stainless steel has been measured and characterized. The effects of solution composition, agitation, atmosphere, corrosion current interruption, chloride ion concentration, and inhibitor additions have been investigated. Pit interaction during pit growth has also been determined. The autocatalytic nature of pitting has been verified, and evidence of ion screening at pit sites has been experimentally observed for the first time. 3.2.2


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 571
Author(s):  
Servando Chinchón-Payá ◽  
Julio E. Torres Martín ◽  
Nuria Rebolledo Ramos ◽  
Javier Sánchez Montero

To ensure that a structure will last throughout its service life, repairing reinforced concrete entails, among others, correctly marking off the area affected by aggressive agents that may deteriorate both the concrete and the steel. Chloride, the most damaging source of reinforcement corrosion, may diffuse to a greater or lesser distance from the surface depending on the ease of penetration. In this study, we calibrated a handheld X-ray fluorescence analyser (hXRF) and used it to quantify the chloride concentration in cement-based materials. The findings were verified against a series of samples of known concentration to establish a suitable correction factor. Chloride ions were quantified precisely and accurately with the hXRF instrument, and we calculated a correction factor of 1.16. The instrument and the information recorded were used to quantify the chloride ion content in different parts of an existing structure. The analyser identified apparently healthy areas that could, nonetheless, pose oxidation problems in the near future due to significant chloride concentration. Chloride quantification data at different depths can be used to draw diffusion or penetration profiles and to determine whether ion concentration around the reinforcement is within the recommended limits. The method developed can be applied in situ to quickly locate the most critical areas.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Guiyang Wu ◽  
Xikui Gu ◽  
Wanwei Zhao ◽  
Rui Fan ◽  
Ting Mao

Purpose This paper aims to study the effect of chloride ions concentration on the corrosion behavior of carbon steel in methyldiethanolamine (MDEA) aqueous solution in the sight of different process parameters of purification plant. Design/methodology/approach Due to the decrease of filtration efficiency and separation efficiency, the chloride ion in the desulfurization solution is enriched. The corrosion behavior of carbon steel under chloride ion enrichment environment was studied by weight-loss method, electrochemical impedance spectroscopy, cyclic polarization curve, X-ray photoelectron spectroscopy and scanning electron microscopy. Findings The results show that temperature and hydrogen sulfide loads are the main factors of corrosion in CO2-MDEA-H2O-H2S environment. The enrichment of chloride ions reduces the corrosion rate at low temperature but promotes the corrosion rate at high temperature. The chloride concentration should be controlled below 3000 mg/L, and no pitting corrosion was found under the experimental conditions. Originality/value The effect of chloride ion enrichment on MDEA solution corrosion shows that at low temperature, the increase of chloride ion will reduce the acid gas load and increase the density of corrosion products, so as to reduce the corrosion; on the contrary, at high temperature, the density of corrosion products will decrease and the corrosion will be intensified as well. It is believed that the chloride ion should be controlled below 3000 mg/L according to the results of the tests.


Sign in / Sign up

Export Citation Format

Share Document