Wogonoside: Anti-human colon cancer activities and survey of HMG-CoA ‎reductase inhibition properties with molecular modeling

Author(s):  
Jiamiao Liu ◽  
Huifang Tan ◽  
Qing Zeng

IntroductionThe biological activities and interactions of wogonoside in the presence of HMG-COA reductase were investigated using the molecular docking study as a versatile theoretical approach. Wogonoside showed a considerable binding affinity to the enzyme with a docking score of -7.582 kcal/mol.Material and methodsThe in vitro cytotoxic and anti- colon ‎ carcinoma effects of biologically synthesized Wogonoside ‎against GP5d, MDST8‎, HCA-46‎, HT115, LS174T, and COLO 320DM cancer cell lines were ‎assessed.ResultsThe results indicated that the compound makes hydrophobic contacts with essential residues of the catalytic domain of the enzyme. Therefore, wogonosid could be considered as a potential inhibitor for HMG-COA reductase. The IC50 of the Wogonoside were 105, 198, 173, 382, 71, and 183 µg/mL against GP5d, ‎MDST8‎, HCA-46‎, HT115, LS174T, and COLO 320DM cancer cell lines. The anti-colon‎ ‎carcinoma properties of the Wogonoside could significantly remove GP5d, MDST8‎, HCA-46‎, ‎HT115, LS174T, and COLO 320DM cancer cell lines in a time and concentration-dependent ‎manner by MTT assay. ‎ConclusionsIt appears that the anti-human colorectal carcinoma effect of recent nanoparticles is due to their antioxidant effects. We have obtained results for the HMG-CoA Reductase enzyme at the micromolar level. In our study, inhibition result of on HMG-CoA reductase showed lower values 28.70±4.73 micromolar.


2020 ◽  
Vol 14 (1) ◽  
pp. 16
Author(s):  
Bára Křížkovská ◽  
Rohitesh Kumar ◽  
Kateřina Řehořová ◽  
David Sýkora ◽  
Simona Dobiasová ◽  
...  

Selaginella P. Beauv. is a group of vascular plants in the family Selaginellaceae Willk., found worldwide and numbering more than 700 species, with some used as foods and medicines. The aim of this paper was to compare methanolic (MeOH) and dichloromethane (DCM) extracts of eight Selaginella species on the basis of their composition and biological activities. Six of these Selaginella species are underinvestigated. Using ultra-high performance liquid chromatography–high-resolution mass spectrometry (UHPLC–HRMS) analysis, we identified a total of 193 compounds among the tested Selaginella species, with flavonoids predominating. MeOH extracts recovered more constituents that were detected, including selaginellins, the occurrence of which is only typical for this plant genus. Of all the tested species, Selaginellaapoda contained the highest number of identified selaginellins. The majority of the compounds were identified in S. apoda, the fewest compounds in Selaginellacupressina. All the tested species demonstrated antioxidant activity using oxygen radical absorption capacity (ORAC) assay, which showed that MeOH extracts had higher antioxidant capacity, with the half maximal effective concentration (EC50) ranging from 12 ± 1 (Selaginellamyosuroides) to 124 ± 2 (Selaginellacupressina) mg/L. The antioxidant capacity was presumed to be correlated with the content of flavonoids, (neo)lignans, and selaginellins. Inhibition of acetylcholinesterase (AChE) was mostly discerned in DCM extracts and was only exhibited in S. myosuroides, S. cupressina, Selaginellabiformis, and S. apoda extracts with the half maximal inhibitory concentration (IC50) in the range of 19 ± 3 to 62 ± 1 mg/L. Substantial cytotoxicity against cancer cell lines was demonstrated by the MeOH extract of S. apoda, where the ratio of the IC50 HEK (human embryonic kidney) to IC50 HepG2 (hepatocellular carcinoma) was 7.9 ± 0.2. MeOH extracts inhibited the production of nitrate oxide and cytokines in a dose-dependent manner. Notably, S. biformis halved the production of NO, tumor necrosis factor (TNF)-α, and interleukin (IL)-6 at the following concentrations: 105 ± 9, 11 ± 1, and 10 ± 1 mg/L, respectively. Our data confirmed that extracts from Selaginella species exhibited cytotoxicity against cancer cell lines and AChE inhibition. The activity observed in S. apoda was the most promising and is worth further exploration.



Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1653
Author(s):  
Weerachai Phutdhawong ◽  
Apiwat Chuenchid ◽  
Thongchai Taechowisan ◽  
Jitnapa Sirirak ◽  
Waya S. Phutdhawong

A series of novel coumarin-3-carboxamide derivatives were designed and synthesized to evaluate their biological activities. The compounds showed little to no activity against gram-positive and gram-negative bacteria but specifically showed potential to inhibit the growth of cancer cells. In particular, among the tested compounds, 4-fluoro and 2,5-difluoro benzamide derivatives (14b and 14e, respectively) were found to be the most potent derivatives against HepG2 cancer cell lines (IC50 = 2.62–4.85 μM) and HeLa cancer cell lines (IC50 = 0.39–0.75 μM). The activities of these two compounds were comparable to that of the positive control doxorubicin; especially, 4-flurobenzamide derivative (14b) exhibited low cytotoxic activity against LLC-MK2 normal cell lines, with IC50 more than 100 μM. The molecular docking study of the synthesized compounds revealed the binding to the active site of the CK2 enzyme, indicating that the presence of the benzamide functionality is an important feature for anticancer activity.



Author(s):  
Gang Zhao ◽  
Arunachalam Chinnathambi ◽  
Tahani Awad Alahmadi ◽  
Milton Wainwright

IntroductionMolecular docking as a versatile theoretical method was used to investigate the biological activities of anthraflavic acid in the presence of alpha amylase. The outcomes revealed that anthraflavic acid has a considerable binding affinity to the enzyme with a docking score of -7.913 kcal/mol.Material and methodsThese outcomes were further evaluated with free binding energy calculations, and it was concluded that anthraflavic acid could be a potential inhibitor for alpha amylase. The as Anthraflavic acid was explored in the anti-human breast carcinoma tests. The in vitro cytotoxic and anti-breast carcinoma effects of biologically synthesized Anthraflavic acid against MCF-7, CAMA-1, SK-BR-3, MDA-MB-231, AU565 [AU-565], and Hs 281.T cancer cell lines were assessed.ResultsThe anti-breast carcinoma properties of the Anthraflavic acid could significantly remove MCF-7, CAMA-1, SK-BR-3, MDA-MB-231, AU565 [AU-565], and Hs 281.T cancer cell lines in a time and concentration-dependent manner by MTT assay.ConclusionsThe IC50 of the Anthraflavic acid were 159, 193, 253, 156, 241, and 218 µg/mL against MCF-7, CAMA-1, SK-BR-3, MDA-MB-231, AU565 [AU-565], and Hs 281.T cancer cell lines. It seems that the anti-human breast carcinoma effect of recent nanoparticles is due to their antioxidant effects.After clinical study, Anthraflavic acid can be utilized as an efficient drug in the treatment of breast carcinoma in humans.



2020 ◽  
Vol 16 ◽  
Author(s):  
Délis Galvão Guimarães ◽  
Arlan de Assis Gonsalves ◽  
Larissa Araújo Rolim ◽  
Edigênia Cavalcante Araújo ◽  
Victória Laysna dos Anjos Santos ◽  
...  

Background: Natural naphthoquinones have shown diversified biological activities including antibacterial, antifungal, antimalarial, and cytotoxic activities. However, they are also compounds with acute cytotoxicity, immunotoxicity, carcinogenesis, and cardio- and hepatotoxicity, then the modification at their redox center is an interesting strategy to overcome such harmful activity. Objective: In this study, four novel semisynthetic hydrazones, derived from the isomers α- and β-lapachones (α and β, respectively) and coupled with the drugs hydralazine (HDZ) and isoniazid (ACIL), were prepared, evaluated by electrochemical methods and assayed for anticancer activity. Method: The semisynthetic hydrazones were obtained and had their molecular structures established by NMR, IR, and MS. Anticancer activity was evaluated by cell viability determined by reduction of 3-(4,5-dimethyl-2-thiazol)-2,5-diphenyl-2H-tetrazolium bromide (MTT). The electrochemical studies, mainly cyclic voltammetry, were performed, in aprotic and protic media. Result: The study showed that the compounds 2, 3, and 4 were active against at least one of the cancer cell lines evaluated, being compounds 3 and 4 the most cytotoxic. Toward HL-60 cells, compound 3 was 20x more active than β-lapachone, and 3x more cytotoxic than doxorubicin. Furthermore, 3 showed an SI value of 39.62 for HL-60 cells. Compound 4 was active against all cancer cells tested, with IC50 values in the range 2.90–12.40 μM. Electrochemical studies revealed a profile typical of self-protonation and reductive cleavage, dependent on the supporting electrolyte. Conclusion: These results therefore indicate that compounds 3 and 4 are strong candidates as prototypes of new antineoplastic drugs.



Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3923
Author(s):  
Adel A.-H. Abdel-Rahman ◽  
Amira K. F. Shaban ◽  
Ibrahim F. Nassar ◽  
Dina S. EL-Kady ◽  
Nasser S. M. Ismail ◽  
...  

New pyridine, pyrazoloyridine, and furopyridine derivatives substituted with naphthyl and thienyl moieties were designed and synthesized starting from 6-(naphthalen-2-yl)-2-oxo-4-(thiophen-2-yl)-1,2-dihydropyridine-3-carbonitrile (1). The chloro, methoxy, cholroacetoxy, imidazolyl, azide, and arylamino derivatives were prepared to obtain the pyridine-−C2 functionalized derivatives. The derived pyrazolpyridine-N-glycosides were synthesized via heterocyclization of the C2-thioxopyridine derivative followed by glycosylation using glucose and galactose. The furopyridine derivative 14 and the tricyclic pyrido[3′,2′:4,5]furo[3,2-d]pyrimidine 15 were prepared via heterocyclization of the ester derivative followed by a reaction with formamide. The newly synthesized compounds were evaluated for their ability to in vitro inhibit the CDK2 enzyme. In addition, the cytotoxicity of the compounds was tested against four different human cancer cell lines (HCT-116, MCF-7, HepG2, and A549). The CDK2/cyclin A2 enzyme inhibitory results revealed that pyridone 1, 2-chloro-6-(naphthalen-2-yl)-4-(thiophen-2-yl)nicotinonitrile (4), 6-(naphthalen-2-yl)-4-(thiophen-2-yl)-1H-pyrazolo[3,4-b]pyridin-3-amine (8), S-(3-cyano-6-(naphthaen-2-yl)-4-(thiophen-2-yl)pyridin-2-yl) 2-chloroethanethioate (11), and ethyl 3-amino-6-(naphthalen-2-yl)-4-(thiophen-2-yl)furo[2,3-b]pyridine-2-carboxylate (14) are among the most active inhibitors with IC50 values of 0.57, 0.24, 0.65, 0.50, and 0.93 µM, respectively, compared to roscovitine (IC50 0.394 μM). Most compounds showed significant inhibition on different human cancer cell lines (HCT-116, MCF-7, HepG2, and A549) with IC50 ranges of 31.3–49.0, 19.3–55.5, 22.7–44.8, and 36.8–70.7 μM, respectively compared to doxorubicin (IC50 40.0, 64.8, 24.7 and 58.1 µM, respectively). Furthermore, a molecular docking study suggests that most of the target compounds have a similar binding mode as a reference compound in the active site of the CDK2 enzyme. The structural requirements controlling the CDK2 inhibitory activity were determined through the generation of a statistically significant 2D-QSAR model.



Marine Drugs ◽  
2021 ◽  
Vol 19 (2) ◽  
pp. 55
Author(s):  
Synthia Michon ◽  
Florine Cavelier ◽  
Xavier J. Salom-Roig

Aurilides are a class of depsipeptides occurring mainly in marine cyanobacteria. Members of the aurilide family have shown to exhibit strong cytotoxicity against various cancer cell lines. These compounds bear a pentapeptide, a polyketide, and an α-hydroxy ester subunit in their structure. A large number of remarkable studies on aurilides have emerged since 1996. This comprehensive account summarizes the biological activities and total syntheses of natural compounds of the aurilide family as well as their synthetic analogues.



2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Zahra Tayarani-Najaran ◽  
Seyed Ahmad Emami ◽  
Javad Asili ◽  
Alireza Mirzaei ◽  
Seyed Hadi Mousavi

TheScutellariaspecies (Lamiaceae) is used as a source of flavonoids to treat a variety of diseases in traditional medicine. In spite of many reports about the cytotoxic and antitumor effects of some species of this genus, anticancer researches on one of the Iranian speciesS. litwinowiihave not yet been conducted.The cytotoxic properties of total methanol extract ofS. litwinowiiand its fractions were investigated on different cancer cell lines including AGS, HeLa, MCF-7, PC12 and NIH 3T3. Meanwhile, the role of apoptosis in this toxicity was explored. The cells were cultured in DMEM medium and incubated with different concentrations of herb plant extracts. Cell viability was quantitated by MTT assay. Apoptotic cells were determined using propidium iodide staining of DNA fragmentation by flow cytometry (sub-G1 peak).Scutellaria litwinowiiinhibited the growth of malignant cells in a dose-dependent manner. Among solvent fractions ofS. litwinowii, the methylene chloride fraction was found to be more toxic compared to other fractions. The IC50values of this fraction against AGS, HeLa, MCF-7 and PC12 cell lines after 24 h were determined, 121.2 ± 3.1, 40.9 ± 2.5, 115.9 ± 3.5 and 64.5 ± 3.4μg/ml, respectively.Scutellaria litwinowiiinduced a sub-G1 peak in the flow cytometry histogram of treated cells compared to control cells indicating that apoptotic cell death is involved inS. litwinowiitoxicity.Scutellaria litwinowiiexerts cytotoxic and proapototic effects in a variety of malignant cell lines and could be considered as a potential chemotherapeutic agent in cancer treatment.



2021 ◽  
Author(s):  
Flaviano Melo Ottoni ◽  
Lucas Bonfim Marques ◽  
Juliana Martins Ribeiro ◽  
Lucas Lopardi Franco ◽  
José Dias Souza Filho ◽  
...  

Abstract Lapachol (1), a natural naphthoquinone, presents several biological activities including antitumor activity, used as anticancer coadjuvant whose use was abandoned because of adverse effects. Herein, we reported the synthesis and cytotoxicity evaluation against cancer cell lines of a series of Oglycosides and glycosyl triazoles derived from lapachol. In addition to the determination of IC50, the DNA fragmentation and clonogenicity were also evaluated. The glycoside derived from D-glucose (5) was far more active than lapachol (1) and more active in tumor cell lines HL60, Jurkat, THP-1 and MDA-MB-231 than to the non-tumoral PBMC cell line, indicating an improvement in activity and selectivity as compared with lapachol (1). Compound 5 and the glycosides derived from D-galactose (14), D-N-acetylglucosamine (15) and L-fucose (16) showed good results in the DNA fragmentation and clonogenicity assays in the studies of subdiploid DNA content, indicating a pro-apoptotic potential and a good antiproliferative activity of these glycosides.





ChemistryOpen ◽  
2018 ◽  
Vol 7 (5) ◽  
pp. 381-392 ◽  
Author(s):  
Atiruj Theppawong ◽  
Tim Van de Walle ◽  
Charlotte Grootaert ◽  
Margot Bultinck ◽  
Tom Desmet ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document