scholarly journals Comparison of the influence of photodynamic reaction on the Me45 and MEWO cell lines in vitro

2012 ◽  
Vol 3 ◽  
pp. 240-243 ◽  
Author(s):  
Anna Choromańska ◽  
Jolanta Saczko ◽  
Julita Kulbacka ◽  
Iwona Kamińska ◽  
Nina Skołucka ◽  
...  
2020 ◽  
Author(s):  
Satsuki Murakami ◽  
Susumu Suzuki ◽  
Ichiro Hanamura ◽  
Kazuhiro Yoshikawa ◽  
Ryuzo Ueda ◽  
...  

2010 ◽  
Vol 49 (S 01) ◽  
pp. S64-S68
Author(s):  
E. Dikomey

SummaryIonising irradiation acts primarily via induction of DNA damage, among which doublestrand breaks are the most important lesions. These lesions may lead to lethal chromosome aberrations, which are the main reason for cell inactivation. Double-strand breaks can be repaired by several different mechanisms. The regulation of these mechanisms appears be fairly different for normal and tumour cells. Among different cell lines capacity of doublestrand break repair varies by only few percents and is known to be determined mostly by genetic factors. Knowledge about doublestrand break repair mechanisms and their regulation is important for the optimal application of ionising irradiation in medicine.


2019 ◽  
Vol 7 (4) ◽  
pp. 91-96
Author(s):  
Isra'a Al-sobhi ◽  
◽  
Rawan Al-Ghabban ◽  
Soad Shaker Ali ◽  
Jehan Al-Amri ◽  
...  

Author(s):  
Joshi Vedamurthy ◽  
Shivakumar Inamdar ◽  
Ankit Acharya ◽  
Rajesh Kowti

In this project, in vitro absorption enhancement activity of P-gp substrates Fexofenadine (Fx) and Ciprofloxacin (Cp) were evaluated in everted rat gut sac model and Caco-2 cell lines. Verapamil was used as P-gp inhibitor. Piper betel, Trachyspermum ammi, Plumbago zeylanica, Trikatu, Moringaoleifera, Murraya koenigii,  Ferulafoitida  Zingiber officinale, Cheilocostus speciosus, Capsicum frutescens Operculina turpethum Holarrhena antidysenterica Mesuaferrea, Tinospora cordifolia,  and Picrorhiza kurroa, were selected and extracted with 99% alcohol and fresh juices of Citrus limon, Punica granatum seeds were also studied. In-vitro studies depicted that Fexofenadine and Ciprofloxacin absorption was increased greater than 20% in the presence of Operculinaturpethum, Capsicum frutescens, Holarrhena Antidysenterica, Tinospora cordifolia, Trikatu, Trachyspermum ammi, Plumbago zeylanica. The flux of the ciprofloxacin transport was in the range of 9-23 mcg/min and Papp         2.6 × 10-5 cm/sec to 4.1 × 10-5  cm/sec whereas Fexofenadine flux was in the range of 2-7.7 mcg/min and Papp 4.16 × 10–6 cm/sec to 1.62 ×       10-5 cm/sec.  In vitro antimicrobial activity of ciprofloxacin on selected microbes in presence of extracts also depicted synergistic activity. Histological studies revealed that there is no significant variation observed in the isolated sac in presence of the extracts. CaCo2 cell lines studies showed that, formulation enhanced the absorption of fexofenadine greater than 50%. Tablets were prepared and evaluated using the plant extracts which yielded >20% absorption enhancement of the substrates. In conclusion, tablet formulation containing the alcoholic extracts of Trachyspermum ammi, Plumbago zylanicum, Capsicum frutescens, Operculina turpethum, Holarrhena Antidysenterica, Tinospora cordifolia and Trikatu can act as an absorption enhancer for fexofenadine and ciprofloxacin. The mechanism of action of these herbs could be due to    P-gp inhibition. Further clinical studies are needed to prove its efficacy in humans.     


2017 ◽  
Vol 63 (1) ◽  
pp. 141-145
Author(s):  
Yuliya Khochenkova ◽  
Eliso Solomko ◽  
Oksana Ryabaya ◽  
Yevgeniya Stepanova ◽  
Dmitriy Khochenkov

The discovery for effective combinations of anticancer drugs for treatment for breast cancer is the actual problem in the experimental chemotherapy. In this paper we conducted a study of antitumor effect of the combination of sunitinib and bortezomib against MDA-MB-231 and SKBR-3 breast cancer cell lines in vitro. We found that bortezomib in non-toxic concentrations can potentiate the antitumor activity of sunitinib. MDA-MB-231 cell line has showed great sensitivity to the combination of bortezomib and sunitinib in vitro. Bortezomib and sunitinib caused reduced expression of receptor tyrosine kinases VEGFR1, VEGFR2, PDGFRa, PDGFRß and c-Kit on HER2- and HER2+ breast cancer cell lines


2019 ◽  
Vol 19 (2) ◽  
pp. 112-119 ◽  
Author(s):  
Mariana B. de Oliveira ◽  
Luiz F.G. Sanson ◽  
Angela I.P. Eugenio ◽  
Rebecca S.S. Barbosa-Dantas ◽  
Gisele W.B. Colleoni

Introduction:Multiple myeloma (MM) cells accumulate in the bone marrow and produce enormous quantities of immunoglobulins, causing endoplasmatic reticulum stress and activation of protein handling machinery, such as heat shock protein response, autophagy and unfolded protein response (UPR).Methods:We evaluated cell lines viability after treatment with bortezomib (B) in combination with HSP70 (VER-15508) and autophagy (SBI-0206965) or UPR (STF- 083010) inhibitors.Results:For RPMI-8226, after 72 hours of treatment with B+VER+STF or B+VER+SBI, we observed 15% of viable cells, but treatment with B alone was better (90% of cell death). For U266, treatment with B+VER+STF or with B+VER+SBI for 72 hours resulted in 20% of cell viability and both treatments were better than treatment with B alone (40% of cell death). After both triplet combinations, RPMI-8226 and U266 presented the overexpression of XBP-1 UPR protein, suggesting that it is acting as a compensatory mechanism, in an attempt of the cell to handle the otherwise lethal large amount of immunoglobulin overload.Conclusion:Our in vitro results provide additional evidence that combinations of protein homeostasis inhibitors might be explored as treatment options for MM.


2019 ◽  
Vol 19 (11) ◽  
pp. 914-926 ◽  
Author(s):  
Maiara Bernardes Marques ◽  
Michael González-Durruthy ◽  
Bruna Félix da Silva Nornberg ◽  
Bruno Rodrigues Oliveira ◽  
Daniela Volcan Almeida ◽  
...  

Background:PIM-1 is a kinase which has been related to the oncogenic processes like cell survival, proliferation, and multidrug resistance (MDR). This kinase is known for its ability to phosphorylate the main extrusion pump (ABCB1) related to the MDR phenotype.Objective:In the present work, we tested a new mechanistic insight on the AZD1208 (PIM-1 specific inhibitor) under interaction with chemotherapy agents such as Daunorubicin (DNR) and Vincristine (VCR).Materials and Methods:In order to verify a potential cytotoxic effect based on pharmacological synergism, two MDR cell lines were used: Lucena (resistant to VCR) and FEPS (resistant to DNR), both derived from the K562 non-MDR cell line, by MTT analyses. The activity of Pgp was ascertained by measuring accumulation and the directional flux of Rh123. Furthermore, we performed a molecular docking simulation to delve into the molecular mechanism of PIM-1 alone, and combined with chemotherapeutic agents (VCR and DNR).Results:Our in vitro results have shown that AZD1208 alone decreases cell viability of MDR cells. However, co-exposure of AZD1208 and DNR or VCR reverses this effect. When we analyzed the ABCB1 activity AZD1208 alone was not able to affect the pump extrusion. Differently, co-exposure of AZD1208 and DNR or VCR impaired ABCB1 activity, which could be explained by compensatory expression of abcb1 or other extrusion pumps not analyzed here. Docking analysis showed that AZD1208 is capable of performing hydrophobic interactions with PIM-1 ATP- binding-site residues with stronger interaction-based negative free energy (FEB, kcal/mol) than the ATP itself, mimicking an ATP-competitive inhibitory pattern of interaction. On the same way, VCR and DNR may theoretically interact at the same biophysical environment of AZD1208 and also compete with ATP by the PIM-1 active site. These evidences suggest that AZD1208 may induce pharmacodynamic interaction with VCR and DNR, weakening its cytotoxic potential in the ATP-binding site from PIM-1 observed in the in vitro experiments.Conclusion:Finally, the current results could have a pre-clinical relevance potential in the rational polypharmacology strategies to prevent multiple-drugs resistance in human leukemia cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document