Smart insole sensors with printed electronics enable intelligent health tech

OPE Journal ◽  
2021 ◽  
Vol 11 (35) ◽  
pp. 11-11

IEE from Luxembourg is one of the first companies to develop and manufacture smart insole sensors with PE technology for shoes. Due to their durability and versatility, such products opened the doors to a wide range of IoT applications in the healthcare sector

Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1615
Author(s):  
Zeeshan Ali Khan ◽  
Ubaid Abbasi ◽  
Sung Won Kim

Low power wide area networks (LPWAN) are comprised of small devices having restricted processing resources and limited energy budget. These devices are connected with each other using communication protocols. Considering their available resources, these devices can be used in a number of different Internet of Things (IoT) applications. Another interesting paradigm is machine learning, which can also be integrated with LPWAN technology to embed intelligence into these IoT applications. These machine learning-based applications combine intelligence with LPWAN and prove to be a useful tool. One such IoT application is in the medical field, where they can be used to provide multiple services. In the scenario of the COVID-19 pandemic, the importance of LPWAN-based medical services has gained particular attention. This article describes various COVID-19-related healthcare services, using the the applications of machine learning and LPWAN in improving the medical domain during the current COVID-19 pandemic. We validate our idea with the help of a case study that describes a way to reduce the spread of any pandemic using LPWAN technology and machine learning. The case study compares k-Nearest Neighbors (KNN) and trust-based algorithms for mitigating the flow of virus spread. The simulation results show the effectiveness of KNN for curtailing the COVID-19 spread.


2021 ◽  
Author(s):  
Dongjin Xie ◽  
Qiuyi Luo ◽  
Shen Zhou ◽  
Mei Zu ◽  
Haifeng Cheng

Inkjet printing of functional material has shown a wide range of application in advertzing, OLED display, printed electronics and other specialized utilities that require high-precision, mask-free, direct-writing deposition technique. Nevertheless,...


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3746 ◽  
Author(s):  
Antonio Lazaro ◽  
Ramon Villarino ◽  
David Girbau

In this article, an overview of recent advances in the field of battery-less near-field communication (NFC) sensors is provided, along with a brief comparison of other short-range radio-frequency identification (RFID) technologies. After reviewing power transfer using NFC, recommendations are made for the practical design of NFC-based tags and NFC readers. A list of commercial NFC integrated circuits with energy-harvesting capabilities is also provided. Finally, a survey of the state of the art in NFC-based sensors is presented, which demonstrates that a wide range of sensors (both chemical and physical) can be used with this technology. Particular interest arose in wearable sensors and cold-chain traceability applications. The availability of low-cost devices and the incorporation of NFC readers into most current mobile phones make NFC technology key to the development of green Internet of Things (IoT) applications.


2020 ◽  
Vol 142 (8) ◽  
Author(s):  
Roozbeh (Ross) Salary ◽  
Jack P. Lombardi ◽  
Darshana L. Weerawarne ◽  
M. Samie Tootooni ◽  
Prahalada K. Rao ◽  
...  

Abstract Aerosol jet printing (AJP) is a direct-write additive manufacturing (AM) method, emerging as the process of choice for the fabrication of a broad spectrum of electronics, such as sensors, transistors, and optoelectronic devices. However, AJP is a highly complex process, prone to intrinsic gradual drifts. Consequently, real-time process monitoring and control in AJP is a bourgeoning need. The goal of this work is to establish an integrated, smart platform for in situ and real-time monitoring of the functional properties of AJ-printed electronics. In pursuit of this goal, the objective is to forward a multiple-input, single-output (MISO) intelligent learning model—based on sparse representation classification (SRC)—to estimate the functional properties (e.g., resistance) in situ as well as in real-time. The aim is to classify the resistance of printed electronic traces (lines) as a function of AJP process parameters and the trace morphology characteristics (e.g., line width, thickness, and cross-sectional area (CSA)). To realize this objective, line morphology is captured using a series of images, acquired: (i) in situ via an integrated high-resolution imaging system and (ii) in real-time via the AJP standard process monitor camera. Utilizing image processing algorithms developed in-house, a wide range of 2D and 3D morphology features are extracted, constituting the primary source of data for the training, validation, and testing of the SRC model. The four-point probe method (also known as Kelvin sensing) is used to measure the resistance of the deposited traces and as a result, to define a priori class labels. The results of this study exhibited that using the presented approach, the resistance (and potentially, other functional properties) of printed electronics can be estimated both in situ and in real-time with an accuracy of ≥ 90%.


Author(s):  
Kunal.S. Pawar ◽  
Pravin.C. Latane

With the development in the education system, considering the latest current online exam system, a new projection of online exam system based on Raspberry pi IOT is proposed, and the key implementation techniques and methods are also described. The growing ubiquity of wireless, RFID mobile and sensor devices has provide a promising opportunity to build the powerful examination systems and applications by Internet of Things (IoT). A wide range of IoT applications have been developed in recent years. In an effort to understand the development of IoT in online examination, here we propose the current research of IoT, IOT key enabling technologies, major IoT applications in online examination and identifies research trends and challenges. Here we initially all the examine details are stored in the server. Then By applying face recognition (in Open CV based) technique, you can start the online examination. Due to sometime unwanted person also enter to wright the exam, so this is the best way to identified any culprits are found or not.


Author(s):  
Andrew Claypole ◽  
James Claypole ◽  
Tim Claypole ◽  
David Gethin ◽  
Liam Kilduff

Abstract Carbon-based pastes and inks are used extensively in a wide range of printed electronics because of their widespread availability, electrical conductivity and low cost. Overcoming the inherent tendency of the nano-carbon to agglomerate to form a stable dispersion is necessary if these inks are to be taken from the lab scale to industrial production. Plasma functionalization of graphite nanoplatelets (GNP) adds functional groups to their surface to improve their interaction with the polymer resin. This offers an attractive method to overcome these problems when creating next generation inks. Both dynamic and oscillatory rheology were used to evaluate the stability of inks made with different loadings of functionalized and unfunctionalized GNP in a thin resin, typical of a production ink. The rheology and the printability tests showed the same level of dispersion and electrical performance had been achieved with both functionalized and unfunctionalized GNPs. The unfunctionalized GNPs agglomerate to form larger, lower aspect particles, reducing interparticle interactions and particle–medium interactions. Over a 12-week period, the viscosity, shear thinning behavior and viscoelastic properties of the unfunctionalized GNP inks fell, with decreases in viscosity at 1.17 s−1 of 24, 30, 39% for the ϕ = 0.071, 0.098, 0.127 GNP suspensions, respectively. However, the rheological properties of the functionalized GNP suspensions remained stable as the GNPs interacted better with the polymer in the resin to create a steric barrier which prevented the GNPs from approaching close enough for van der Waals forces to be effective.


Electronics ◽  
2021 ◽  
Vol 10 (21) ◽  
pp. 2562
Author(s):  
Georgios Zachos ◽  
Ismael Essop ◽  
Georgios Mantas ◽  
Kyriakos Porfyrakis ◽  
José C. Ribeiro ◽  
...  

Over the past few years, the healthcare sector is being transformed due to the rise of the Internet of Things (IoT) and the introduction of the Internet of Medical Things (IoMT) technology, whose purpose is the improvement of the patient’s quality of life. Nevertheless, the heterogenous and resource-constrained characteristics of IoMT networks make them vulnerable to a wide range of threats. Thus, novel security mechanisms, such as accurate and efficient anomaly-based intrusion detection systems (AIDSs), considering the inherent limitations of the IoMT networks, need to be developed before IoMT networks reach their full potential in the market. Towards this direction, in this paper, we propose an efficient and effective anomaly-based intrusion detection system (AIDS) for IoMT networks. The proposed AIDS aims to leverage host-based and network-based techniques to reliably collect log files from the IoMT devices and the gateway, as well as traffic from the IoMT edge network, while taking into consideration the computational cost. The proposed AIDS is to rely on machine learning (ML) techniques, considering the computation overhead, in order to detect abnormalities in the collected data and thus identify malicious incidents in the IoMT network. A set of six popular ML algorithms was tested and evaluated for anomaly detection in the proposed AIDS, and the evaluation results showed which of them are the most suitable.


Author(s):  
Monika Parmar, Et. al.

Blockchain technology, which would be the underlying technology, has recently become very popular with the increase in cryptocurrencies and is being used in IoT and other fields. There have been shortfalls, however, which impede its implementation, including the volume of space. Transactions will be produced at a significant level due to the huge amount of Connected systems that often work in many networks as data processors. In IoT, the storage issue will become more intense. Current storing data platforms have a wide range of features to respond to an extensive variety spectrum of uses. Nevertheless, new groups of systems have arisen, e.g., blockchain with data version control, fork semantics, tamper-evidence or some variation thereof, and distributed analysis. They're showing new challenges for storage solutions to effectively serve such energy storage Systems by integrating the criteria mentioned in the processing. This paper discusses the potential security and privacy concerns of IoT applications and also it is shown that in first step the storage is enhanced by 50% and further in the next step, it is improved and it takes only 256 bytes irrespective of the input data size.


2021 ◽  
pp. 88-99
Author(s):  
O.S. Kovalenko ◽  
◽  
L.M. Kozak ◽  
E.V. Gorshkov ◽  
M. Najafian Tumajani ◽  
...  

Introduction. The development of effective digital medicine tools is an intensive and complex process that requires the interdisciplinary efforts of a wide range of experts, from scientists and engineers to ethics experts and lawyers. Digital medicine products have great potential for improving medical measurement, diagnosis and treatment. One of the main challenges for the healthcare sector is to address the issue of fast, convenient and secure exchange of information about patients’ health. Service-oriented architectures of such products may accomplish many of the challenges facing healthcare systems. The purpose of the paper is to develop an information and software module ExchangeDMD to ensure the accumulation, storage and exchange of diagnostic medical data in accordance with modern medical information standards to maintain the interoperability function as one of the leading principles of digital medicine. Results. A special adaptive architecture of digital medicine infrastructure has been developed, which enables an integrated solution of data exchange between participants of providing medical services, which is carried out with the help of web services. The specifics of different types of medical information are analyzed and taken into account in accordance with the access regime for its processing. The module structure has been developed and implemented in software, which has three main levels: central virtual storage (virtual data center to implement certain functions), remote administration segment (technical support and administration network) and user segment (mobile devices and user-patient applications). Conclusions. The ExchangeDMD information and software module is designed to ensure the accumulation of patient data, integration between the various units within the system, as well as to ensure the management of this data by health care personnel. The ExchangeDMD module is built using the international standard HL7 CDA, which enables formalizing electronic medical records using RIM (information model links) to attract the necessary directories and classifiers when creating medical records and documents.


Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3498 ◽  
Author(s):  
Giovanni Battista Chirico ◽  
Francesco Bonavolontà

This Special Issue is focused on recent advances in integrated monitoring and modelling technologies for agriculture and forestry. The selected contributions cover a wide range of topics, including wireless field sensing systems, satellite and UAV remote sensing, ICT and IoT applications for smart farming.


Sign in / Sign up

Export Citation Format

Share Document