scholarly journals A Cross-Platform Application for Covid-19 Diagnostic

2021 ◽  
Author(s):  
Hamza Chehili ◽  
Mustapha Bensaada

The emergency of the Covid 19 pandemic has led technology to seek solutions to the different problems caused by the disease. In the monitoring area, connected devices offer new possibilities to a rapid detection and intervention of the new cases. They allow remote diagnostic to infected patients with covid 19 symptoms. However, the heterogeneity of the platform requires applications' developers to develop specific solutions for each platform. In this paper, we propose a cross-platform application that permits developer to use one code to build applications in different platforms. The paper describes the architecture of the application by presenting its three parts: interface screens (UI), data manipulation and authentication implementation. Finally, we show selected screens of an android release as an example.

Author(s):  
Adam RUTKOWSKI ◽  
Adam KAWALEC ◽  
Józef JARZEMSKI

During warfare and acts of terrorism an extreme threat to vehicles and other high-value assets comes from armour-piercing projectiles. Under these conditions, defence systems should include devices capable of rapid detection of these threats. Defence assets should also be provided with counter-projectile systems capable of destroying incoming armour-piercing projectiles at a safe distance from the asset to be protected. This paper describes the concept of a system comprising of a lightweight short-range radar and a counter-projectile for countering armour-piercing projectiles. The purpose of the radar is to monitor the environment and search for incoming armour-piercing projectiles. When an armour-piercing projectile is detected in a designated monitoring area, an automatic command is given for the counter-projectile launcher to be fired. The counter-projectile deployed can be equipped with a single or multi-sensor detection head unit and an explosive payload module, both being the primary components of the warhead. When the signal analysis blocks interfaced with the detection head determine that the armour-piercing projectile to be struck down is in the target position in relation to the counter-projectile deployed, they automatically command the explosive payload module to detonate. The components of the system concept were tested in proving ground conditions. The successful results of these tests confirmed the validity of the solutions initially adopted and the execution of the individual systems.


Author(s):  
O. E. Bradfute

Electron microscopy is frequently used in preliminary diagnosis of plant virus diseases by surveying negatively stained preparations of crude extracts of leaf samples. A major limitation of this method is the time required to survey grids when the concentration of virus particles (VPs) is low. A rapid survey of grids for VPs is reported here; the method employs a low magnification, out-of-focus Search Mode similar to that used for low dose electron microscopy of radiation sensitive specimens. A higher magnification, in-focus Confirm Mode is used to photograph or confirm the detection of VPs. Setting up the Search Mode by obtaining an out-of-focus image of the specimen in diffraction (K. H. Downing and W. Chiu, private communications) and pre-aligning the image in Search Mode with the image in Confirm Mode facilitates rapid switching between Modes.


Author(s):  
C.D. Humphrey ◽  
T.L. Cromeans ◽  
E.H. Cook ◽  
D.W. Bradley

There is a variety of methods available for the rapid detection and identification of viruses by electron microscopy as described in several reviews. The predominant techniques are classified as direct electron microscopy (DEM), immune electron microscopy (IEM), liquid phase immune electron microscopy (LPIEM) and solid phase immune electron microscopy (SPIEM). Each technique has inherent strengths and weaknesses. However, in recent years, the most progress for identifying viruses has been realized by the utilization of SPIEM.


Author(s):  
Ivan Batrak ◽  
Keyword(s):  

Designing a cross-platform software for implementing IRBIS LAS on the PHP platform is discussed. The new print format language interpreter for IRBIS LAS based on J-ISIS and CISIS formatting language features and capabilities, is also developed.


2012 ◽  
Vol 6 (1) ◽  
pp. 11-13
Author(s):  
Sushmita Roy ◽  
S.M. Shamsuzzaman ◽  
K.Z. Mamun

Rotavirus is one of the leading causes of pediatric diarrhea globally. Accurate and rapid diagnosis of Rotavirus diarrhea should reduce unnecessary use of antibiotics and ultimately reduce drug resistance. Study was designed for rapid diagnosis of Rotavirus antigen in stool sample by ICT (Immunochromatographic test) as well as to observe the seasonal variation of rotavirus infection. This cross sectional study was carried out in the department of Microbiology, Dhaka Medical College from January 2011 to December 2011. Eighty stool samples were collected from Dhaka Shishu Hospital and Dhaka Medical College Hospital. All samples were tested for rotavirus antigen by ICT. Among 80 patients, 42 (52.5%) samples were positive for rotavirus antigen. Among these 42 positive samples, 30 (71.43%) were from 0-12 months of age group, 10 (23.81%) from 13 to 24 months of age group and rest 2 (4.76%) from 25 to 36 months of age group. Rotavirus Ag was detected in stool samples from January to April and another peak episode from October to December. Considering the importance of Rotavirus associated diarrhea, rapid detection of Rotavirus infection in human is substantially needed and should be routinely practiced.DOI: http://dx.doi.org/10.3329/bjmm.v6i1.19354 Bangladesh J Med Microbiol 2012; 06(01): 11-13


Sign in / Sign up

Export Citation Format

Share Document