scholarly journals System for Detection of Vital Signals with an Embedded System

Author(s):  
Maheswari Arumugam Chetty

Rapid advancement in the field of Embedded Systems and Wireless communications has permitted development of Revolutionary Medical Monitoring Systems and thus improving the lifestyle of patients. The system captures and analyzes the ECG signals in real time through a low cost embedded development board. The system can detect cardiac abnormalities with high precision. One of the objectives at the time of building the proposed system has been to optimize the resources, memory size and communication costs.

Electronics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 13
Author(s):  
Balaji M ◽  
Chandrasekaran M ◽  
Vaithiyanathan Dhandapani

A Novel Rail-Network Hardware with simulation facilities is presented in this paper. The hardware is designed to facilitate the learning of application-oriented, logical, real-time programming in an embedded system environment. The platform enables the creation of multiple unique programming scenarios with variability in complexity without any hardware changes. Prior experimental hardware comes with static programming facilities that focus the students’ learning on hardware features and programming basics, leaving them ill-equipped to take up practical applications with more real-time constraints. This hardware complements and completes their learning to help them program real-world embedded systems. The hardware uses LEDs to simulate the movement of trains in a network. The network has train stations, intersections and parking slots where the train movements can be controlled by using a 16-bit Renesas RL78/G13 microcontroller. Additionally, simulating facilities are provided to enable the students to navigate the trains by manual controls using switches and indicators. This helps them get an easy understanding of train navigation functions before taking up programming. The students start with simple tasks and gradually progress to more complicated ones with real-time constraints, on their own. During training, students’ learning outcomes are evaluated by obtaining their feedback and conducting a test at the end to measure their knowledge acquisition during the training. Students’ Knowledge Enhancement Index is originated to measure the knowledge acquired by the students. It is observed that 87% of students have successfully enhanced their knowledge undergoing training with this rail-network simulator.


2021 ◽  
Vol 11 (11) ◽  
pp. 4940
Author(s):  
Jinsoo Kim ◽  
Jeongho Cho

The field of research related to video data has difficulty in extracting not only spatial but also temporal features and human action recognition (HAR) is a representative field of research that applies convolutional neural network (CNN) to video data. The performance for action recognition has improved, but owing to the complexity of the model, some still limitations to operation in real-time persist. Therefore, a lightweight CNN-based single-stream HAR model that can operate in real-time is proposed. The proposed model extracts spatial feature maps by applying CNN to the images that develop the video and uses the frame change rate of sequential images as time information. Spatial feature maps are weighted-averaged by frame change, transformed into spatiotemporal features, and input into multilayer perceptrons, which have a relatively lower complexity than other HAR models; thus, our method has high utility in a single embedded system connected to CCTV. The results of evaluating action recognition accuracy and data processing speed through challenging action recognition benchmark UCF-101 showed higher action recognition accuracy than the HAR model using long short-term memory with a small amount of video frames and confirmed the real-time operational possibility through fast data processing speed. In addition, the performance of the proposed weighted mean-based HAR model was verified by testing it in Jetson NANO to confirm the possibility of using it in low-cost GPU-based embedded systems.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 469
Author(s):  
Hyun Woo Oh ◽  
Ji Kwang Kim ◽  
Gwan Beom Hwang ◽  
Seung Eun Lee

Recently, advances in technology have enabled embedded systems to be adopted for a variety of applications. Some of these applications require real-time 2D graphics processing running on limited design specifications such as low power consumption and a small area. In order to satisfy such conditions, including a specific 2D graphics accelerator in the embedded system is an effective method. This method reduces the workload of the processor in the embedded system by exploiting the accelerator. The accelerator assists the system to perform 2D graphics processing in real-time. Therefore, a variety of applications that require 2D graphics processing can be implemented with an embedded processor. In this paper, we present a 2D graphics accelerator for tiny embedded systems. The accelerator includes an optimized line-drawing operation based on Bresenham’s algorithm. The optimized operation enables the accelerator to deal with various kinds of 2D graphics processing and to perform the line-drawing instead of the system processor. Moreover, the accelerator also distributes the workload of the processor core by removing the need for the core to access the frame buffer memory. We measure the performance of the accelerator by implementing the processor, including the accelerator, on a field-programmable gate array (FPGA), and ascertaining the possibility of realization by synthesizing using the 180 nm CMOS process.


Author(s):  
Abouzahir Mohamed ◽  
Elouardi Abdelhafid ◽  
Bouaziz Samir ◽  
Latif Rachid ◽  
Tajer Abdelouahed

The improved particle filter based simultaneous localization and mapping (SLAM) has been developed for many robotic applications. The main purpose of this article is to demonstrate that recent heterogeneous architectures can be used to implement the FastSLAM2.0 and can greatly help to design embedded systems based robot applications and autonomous navigation. The algorithm is studied, optimized and evaluated with a real dataset using different sensors data and a hardware in the loop (HIL) method. Authors have implemented the algorithm on a system based embedded applications. Results demonstrate that an optimized FastSLAM2.0 algorithm provides a consistent localization according to a reference. Such systems are suitable for real time SLAM applications.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 3021 ◽  
Author(s):  
Zeba Idrees ◽  
Zhuo Zou ◽  
Lirong Zheng

With the swift growth in commerce and transportation in the modern civilization, much attention has been paid to air quality monitoring, however existing monitoring systems are unable to provide sufficient spatial and temporal resolutions of the data with cost efficient and real time solutions. In this paper we have investigated the issues, infrastructure, computational complexity, and procedures of designing and implementing real-time air quality monitoring systems. To daze the defects of the existing monitoring systems and to decrease the overall cost, this paper devised a novel approach to implement the air quality monitoring system, employing the edge-computing based Internet-of-Things (IoT). In the proposed method, sensors gather the air quality data in real time and transmit it to the edge computing device that performs necessary processing and analysis. The complete infrastructure & prototype for evaluation is developed over the Arduino board and IBM Watson IoT platform. Our model is structured in such a way that it reduces the computational burden over sensing nodes (reduced to 70%) that is battery powered and balanced it with edge computing device that has its local data base and can be powered up directly as it is deployed indoor. Algorithms were employed to avoid temporary errors in low cost sensor, and to manage cross sensitivity problems. Automatic calibration is set up to ensure the accuracy of the sensors reporting, hence achieving data accuracy around 75–80% under different circumstances. In addition, a data transmission strategy is applied to minimize the redundant network traffic and power consumption. Our model acquires a power consumption reduction up to 23% with a significant low cost. Experimental evaluations were performed under different scenarios to validate the system’s effectiveness.


2020 ◽  
Vol 7 (1) ◽  
pp. 16
Author(s):  
Nuzhat Ahmed ◽  
Yong Zhu

Atrial fibrillation, often called AF is considered to be the most common type of cardiac arrhythmia, which is a major healthcare challenge. Early detection of AF and the appropriate treatment is crucial if the symptoms seem to be consistent and persistent. This research work focused on the development of a heart monitoring system which could be considered as a feasible solution in early detection of potential AF in real time. The objective was to bridge the gap in the market for a low-cost, at home use, noninvasive heart health monitoring system specifically designed to periodically monitor heart health in subjects with AF disorder concerns. The main characteristic of AF disorder is the considerably higher heartbeat and the varying period between observed R waves in electrocardiogram (ECG) signals. This proposed research was conducted to develop a low cost and easy to use device that measures and analyzes the heartbeat variations, varying time period between successive R peaks of the ECG signal and compares the result with the normal heart rate and RR intervals. Upon exceeding the threshold values, this device creates an alert to notify about the possible AF detection. The prototype for this research consisted of a Bitalino ECG sensor and electrodes, an Arduino microcontroller, and a simple circuit. The data was acquired and analyzed using the Arduino software in real time. The prototype was used to analyze healthy ECG data and using the MIT-BIH database the real AF patient data was analyzed, and reasonable threshold values were found, which yielded a reasonable success rate of AF detection.


Author(s):  
Hassan Ali ◽  
Ben Ernest Villaneouva ◽  
Raziq Yaqub

Due to the rising number of heart patients and the apparent need for more robust electrocardiogram (ECG) monitoring of these patients, hospitals are increasingly investing in typical cloud technology or centralized hospital server based remote ECG monitoring systems. However, the deployment these systems in rural communities is limited due to the high cost factor. To counter this challenge, in this paper, we focus on the design and implementation of a low cost real time wireless ambulatory ECG monitoring system. The detected ECG signals are first filtered and amplified and then digitally converted by a microcontroller. The digitized ECG signals are then sent over a ZigBee wireless link to a gateway personal computer (PC) at patient’s premises. The received ECG data from the ZigBee connection is displayed in real time via the National Instruments (NI) Laboratory Virtual Instrument Engineering Workbench (LabVIEW) user interface on the PC for instant personalized evaluation of the ECG data. The ECG data can be saved on the PC and sent via email to a remote cardiologist or a clinician. Additionally, the gateway PC at patient’s end acts as web server for sharing patient’s data over the Internet.  The remote off-site physician (medical staff in a hospital) can use a web browser on a PC, laptop or a mobile phone with Internet connection to access patient’s real time ECG trace for monitoring, expert review and diagnosis. It is shown that the system prototype allows users to acquire reliable ECG signals effectively and simply. The proposed ambulatory ECG system offers an alternative low cost deployment strategy and is especially suited for remote cardiac monitoring of patients in rural communities.


2011 ◽  
Vol 314-316 ◽  
pp. 1695-1701
Author(s):  
Wei Qiang Gao ◽  
Chao Ting Qing ◽  
Ze Hua Hu ◽  
Zou Ya Huang

Recently, the application of fieldbus is becoming a trend in the development of CNC system towards decentralisation, network and multi-axis linkage. It is anticipated that fieldbus will be one of the leading technologies in the area of numerical control before long. Meanwhile, embedded system has been widely used in numerical control field to solve the reliability and real-time problems. In order to give full play to the advantages of embedded systems, the MECHATROLINK-II fieldbus is introduced to solve the transmission bottleneck of servo communications and multi-axis synchronous control problems. And it is proved that the application scheme combined fieldbus and embedded system is successful and valid by a large amount of performance testings.


Author(s):  
Tomás Serrano-Ramírez ◽  
Ninfa del Carmen Lozano-Rincón ◽  
Arturo Mandujano-Nava ◽  
Yosafat Jetsemaní Sámano-Flores

Computer vision systems are an essential part in industrial automation tasks such as: identification, selection, measurement, defect detection and quality control in parts and components. There are smart cameras used to perform tasks, however, their high acquisition and maintenance cost is restrictive. In this work, a novel low-cost artificial vision system is proposed for classifying objects in real time, using the Raspberry Pi 3B + embedded system, a Web camera and the Open CV artificial vision library. The suggested technique comprises the training of a supervised classification system of the Haar Cascade type, with image banks of the object to be recognized, subsequently generating a predictive model which is put to the test with real-time detection, as well as the calculation for the prediction error. This seeks to build a powerful vision system, affordable and also developed using free software.


Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1549
Author(s):  
Stefano Ricci

Embedded systems are nowadays employed in a wide range of application, and their capability to implement calculation-intensive algorithms is growing quickly and constantly. This result is obtained by the exploitation of powerful embedded processors that are often connected to coprocessors optimized for a particular application. This work presents an open-source coprocessor dedicated to the real-time generation of a synthetic signal that mimics the echoes produced by a moving fluid when investigated by ultrasounds. The coprocessor is implemented in a Field Programmable Gate Array (FPGA) device and integrated in an embedded system. The system can replace the complex and inaccurate flow-rigs employed in laboratorial tests of Doppler ultrasound systems and methods. This paper details the coprocessor and its standard interfaces, and shows how it can be integrated in the wider architecture of an embedded system. Experiments showed its capability to emulate a fluid flowing in a pipe when investigated by an echographic Doppler system.


Sign in / Sign up

Export Citation Format

Share Document