scholarly journals Low friction hybrid nanocomposite material for brake pad application

2017 ◽  
Author(s):  
◽  
Oluwatoyin Joseph Gbadeyan

Despite the huge improvements made in the development of vehicle brake pad materials, problems such long stopping distances, noise pollution, and heat dissipation still continue to persist. In this regard, a novel polymer-based hybrid nanocomposite brake pad (HC) has been developed. Here, a combination of carbon-based materials, including those at a nanoscale, was used to produce the brake pad. The coefficient of friction, wear rate, noise level, and interfacial temperature was investigated and compared with that of a commercial brake pad material (CR). It was found that the brake pad performance varied with the formulation of each pad. Hybrid nanocomposite brake pads material exhibited superior performance in most tests when compared to the commercial brake pad. They exhibited a 65% lower wear rate, 55% lower noise level, 90% shorter stopping distance, and 71 % lower interfacial temperature than the commercial brake pad (CR). Furthermore, mechanical properties such as hardness, compressive strength, shear strength, and impact resistance were also evaluated. The material exhibited a 376% higher shear strength, 100% improved compressive strength, 77% greater modulus and 100% higher impact strength than the commercial brake pad. The hardness of both brake pads material was statistically comparable. Additionally, the thermal stability, degradation, water and oil absorption behaviour were measured. It was found that HC brake pad material exhibited a 100% lower water absorption and 80% oil absorption rate. The brake pads also exhibited a thermal stability within the brake pad standard maximum working temperature of 300 -400 0C. The superior performance of hybrid nanocomposite brake pad material observed was due to synergism between the carbon-carbon additives and uniform dispersion of carbon fiber as shown in Figure 4.16. Scanning electron microscopy study was subsequently performed on fracture and worn surfaces of the brake pads. The micrographs show changes in the structural formation after the incorporation of carbon based fillers. It also shows the smooth structure and uniform dispersion of the carbon fiber. The smooth surface of the worn brake pad is an indicative of a harder structure. No ploughing or score marks were evident. Hence, it was deduced that the reinforced had superior mechanical and tribological properties. These improved properties are suggestive of materials that may be successfully used for brake pad application.

Author(s):  
CH Achebe ◽  
JL Chukwuneke ◽  
FA Anene ◽  
CM Ewulonu

The development of automobile brake pad using locally sourced palm kernel fiber was carried out. Asbestos, a carcinogenic material, has been used for decades as a friction material. This development has thus prompted a couple of research efforts geared towards its replacement for brake pad manufacture. Palm kernel fiber was used as an alternative filler material in conjunction with various quantities of epoxy resin as the matrix. Three sets of compositions were made, and the resulting specimens subjected to physical and mechanical tests using standard materials, procedures, and equipment. The essence is to determine their suitability and hence possible performance in service. The result showed that sample C with 40% palm kernel fiber content having hardness, compressive strength, abrasion resistance, specific gravity, water absorption, and oil absorption of 178 MPa, 96.2 MPa, 1.67 mg/m, 1.8 g/cm3, 1.86%, and 0.89%, respectively, had an optimum performance rating. It was equally ascertained that increase in the filler content had the effect of increase in hardness, wear resistance, and specific gravity of the composite brake pad, while water and oil absorption got decreased when compared with results obtained by other researchers using conventional brake pads made of other friction materials including asbestos. This is an indicator that palm kernel fiber is a possible and effective retrofit for asbestos as a filler material in automotive brake pad manufacture.


2011 ◽  
Vol 341-342 ◽  
pp. 26-30 ◽  
Author(s):  
Che Mohd Ruzaidi Ghazali ◽  
H. Kamarudin ◽  
J. B. Shamsul ◽  
M. M. A. Abdullah ◽  
A.R. Rafiza

Brake pads are important safety devices in vehicles. An effort to avoid the use of asbestos in brake pads has led to the development of asbestos-free brake pads that incorporate various organic and inorganic fillers. Palm slag as a filler in brake pads was investigated in this paper. Different processing pressures were employed during production of samples through compression molding. The properties examined included hardness, compressive strength, and wear behavior. The results showed that brake pad samples prepared with 60 tons of compression pressure resulted in the most desirable properties. Hence, palm slag has its own potential for use as a filler in asbestos-free brake pads.


2015 ◽  
Vol 766-767 ◽  
pp. 432-437
Author(s):  
V. Thiyagarajan ◽  
R. Vijay ◽  
K. Sivakumar ◽  
R.l. Harigovindhan

Performance of Non Asbestos brake pad requires the optimization of numerous criteria. Alumina fibre is a metallic material which is light weight, excellent wear resistance, thermal stability and structural reinforcement properties. Hence the present work deals with the development of three friction composites in the form of standard disc brake pads using same ingredients in same proportion except alumina fiber containing 7%wt, 11%wt & 14% wt which is compensated by synthetic barites (filler) containing 16%wt, 12%wt & 9% wt and designated as NA01, NA02 and NA03 respectively. Various physical, thermal and mechanical characterizations are carried out as per IS2742 Part 3 standards in which the loss of ignition decreased while the specific gravity, compressive strength and hardness increased with the fiber increase. Then the tribological properties (Fade and Recovery) are tested using Chase Test following IS2742 Part 4 standards. The fade μ and recovery μ % were significantly influenced by the amount of fibre combinations. It was proved that, increase in amount of alumina fibre % had significant effect on fade μ %.Thermo Gravimetric Analysis (TGA) proves that higher fiber content has more thermal stability leading to good fade resistance. Over all NA03 formulation is proved as superlative performer.


2018 ◽  
Vol 140 (3) ◽  
Author(s):  
Oluwatoyin Joseph Gbadeyan ◽  
Krishnan Kanny

Although extensive improvement has been done on brake pad for vehicles, most recent materials used still encounter wear rate, friction, stopping distance, and time deficiencies. In this regards, this study developed a polymer-based nanocomposite brake pad. Here, a combination of carbon-based materials, including those at a nanoscale, was used to produce the brake pad. Tribological performance, such as friction coefficient, wear rate, and stopping distances of developed brake pad were investigated using an inertial dynamometer. The results revealed that the stopping distances, the coefficient of friction (CoF), and wear rate vary with the brake pad formation and velocity. The micrographs show changes in the structural formation after the incorporation of carbon-based fillers. It also shows smooth surface structure and uniform dispersion of the carbon fiber. The smooth surface of the worn brake pad is an indicative of a tougher structure. Hence, it was deduced that the fabricated polymer-based hybrid composite had good tribological property. This improved property is suggestive of materials that may be successfully used for brake pad application.


2020 ◽  
Vol 44 (4) ◽  
pp. 135-144
Author(s):  
C. V. Ossia ◽  
A. Big-Alabo ◽  
E. O. Ekpruke

AbstractIn this study, locally available waste coconut (Cocos nucifera) shells (CSs) were investigated as possible replacement for asbestos-based brake pads. The CS-based brake pad was tested for its physicomechanical properties and compared with a commercial brake pad used as control sample. The results showed that (a) an improved interfacial bonding between the CS particles and the binder as the grain size decreases; (b) the 90 μm grain size sample had better physicomechanical properties than the control sample in all tests except the thermal conductivity and stability tests; and (c) the hardness, compressive strength, and density of the CS-based brake pad decreased with increasing grain size, whereas the absorption properties increased with increasing grain size. The study showed that further reduction of the grain size below 90 μm and matrix impregnation with metals of good thermal conductivity could provide significant improvements to properties of the CS-based brake pad.


2021 ◽  
Vol 38 (1−2) ◽  
Author(s):  
Oluwatoyin Joseph Gbadeyan ◽  
T. P. Mohan ◽  
K. Kanny

This research focuses on the mechanical and effect of oil absorption on the tribological properties of carbon-based brake pad material (CBP).  Carbon-based materials, including those at a nanosize, are combined for developed brake pad material. The mechanical properties related to wear properties such as compression strength, stiffness, hardness, and absorption properties were determined. The effect of oil absorption on the tribological properties of carbon-based materials was investigated. The obtained properties are compared with that of a ceramic-made brake pad (commercial). The experimental results show that the mechanical and absorption properties of the developed brake pad material varied with the combination and quantity of additives used to develop each brake pad material. CBP material offered higher performance than ceramic-made brake pads. The CBP material showed a higher shear strength of about 110%, 51% enhanced compressive strength, 35% greater modulus, comparative statistical hardness, 98% lesser water intake, and 97% oil absorption rate than ceramic made brake pad. The tribological properties of friction material after soaked in oil proved that absorption properties affect tribological properties of brake pads, which can be attributed to the oil content in the material system. The effect of oil uptakes on wear rate and friction of the commercial brake pad was higher than CBP materials, implying that the loading of carbon-based materials is a viable way to reduce absorption rate, which helps in increasing brake pad performance. The improved properties are suggestive of materials combinations that may be used to develop brake pad materials.


2018 ◽  
Vol 39 (1) ◽  
pp. 35-46 ◽  
Author(s):  
Johnson O. Agunsoye ◽  
Sefiu. A. Bello ◽  
Adeola A. Bamigbaiye ◽  
Kayode A. Odunmosu ◽  
Isaac O. Akinboye

Abstract Ceramic tile/steel slag-graphite-Arabic gum composite has been developed using conventional casting techniques for brake pad applications. Chemical properties of the phases present in the matrix of the developed composite were examined using X-ray diffractometer. Spatial configuration of the phases was viewed using Scanning Electron Microscope. Wear and thermal properties of the developed composite were also investigated. Correlation between the properties of the developed composite and the commercial grade brake pads were made. Results showed partial homogenity of the second phase particle within the ceramic matrix. The developed composite brake pad showed a better friction property than the commercial grade brake pads up to 200 s while above this duration, the reverse was the case. The developed composite brake displayed lower wear rates and better thermal stability than the commercial grades implying optimum combination of good wear resistance, friction property and thermal stability up to 200 s. Since brake application while driving is an intermittent short span process (< 3 minutes), the developed composite could serve as a replacement for asbestos brake pad for automobile applications.


2011 ◽  
Vol 328-330 ◽  
pp. 1636-1641 ◽  
Author(s):  
Che Mohd Ruzaidi Ghazali ◽  
H. Kamarudin ◽  
Shamsul Baharin Jamaludin ◽  
M. M. A. Abdullah

The attractive performance-to-cost ratio associated with the incorporation of waste material in composite formulations used to produce brake pads has stimulated the idea of exploring the possible incorporation of additional waste materials in such formulations. Thus, the viability of adding palm slag to the composite formulation used in brake pads was investigated, and the results are reported in this paper. In addition, other fillers, such as calcium carbonate and dolomite, were used for comparative purposes. The properties examined included thermal properties, compressive strength, and wear behavior. The results showed that palm slag has significant potential for use as an alternative to the existing fillers in the composite formulations used to produce brake pads.


2012 ◽  
Vol 622-623 ◽  
pp. 1559-1563
Author(s):  
M.A. Sai Balaji ◽  
K. Kalaichelvan

The formulation of a brake pad requires the optimization of multiple performance criteria. To achieve a stable and adequate friction (µ), the brake pad materials should have low fade and higher recovery characteristics coupled with less wear and noise. Among the properties mentioned, resistance to fade is very difficult to achieve. The type and amount of resin in the friction material is very critical for structural integrity of the composites. The binder should not deteriorate under any diverse conditions. The thermal stability of friction materials and its capacity to bind its ingredients collectively under diverse conditions depend upon the quality and proportion of resin. The current work evaluates the fade and recovery behaviour of developed friction composites from two different resins which are traditional straight phenolic resin and the alkyl benzene modified phenolic resin. Two brake pads with these different resins were fabricated as per Industrial Standard. TGA is carried between 150 – 4000 C as this zone of temperature is very critical which accounts for the weight loss (Thermal degradation). Friction and wear studies were carried out on a friction coefficient test rig as per SAE J661a standard. The results showed that the fade and wear of the friction materials were closely related to the thermal decomposition of the binder resin and durability of the contact plateaus, which were produced by the compaction of wear debris around hard ingredients on the rubbing surface. It was clearly observed that the friction materials with modified resin showed significant reduction in fade %. Friction materials made with higher thermal stability showed resistance to fade. However wear didn’t show much noticeable changes.


Author(s):  
W. C. Solomon ◽  
M. T. Lilly ◽  
J. I. Sodiki

The development and evaluation of brake pads using groundnut shell (GS) particles as substitute material for asbestos were carried out in this study. This was with a view to harnessing the properties of GS, which is largely deposited as waste, and in replacing asbestos which is carcinogenic in nature despite its good tribological and mechanical properties. Two sets of composite material were developed using varying particle sizes of GS as filler material, with phenolic resin as binder with percentage compositions of 45% and 50% respectively. Results obtained indicate that the compressive strength and density increase as the sieve size of the filler material decreases, while water and oil absorption rates increase with an increase in sieve size of GS particle. This study also indicates that the cost of producing brake pad can be reduced by 19.14 percent if GS is use as filler material in producing brake pad. The results when compared with those of asbestos and industrial waste showed that GS particle can be used as an effective replacement for asbestos in producing automobile brake pad. Unlike asbestos, GS-based brake pads are environmental friendly, biodegradable and cost effective.


Sign in / Sign up

Export Citation Format

Share Document