scholarly journals On the Effect of ECAP Processing Temperature on the Microstructure, Texture Evolution and Mechanical Properties of Commercial Pure Copper

2021 ◽  
Vol 12 (9) ◽  
pp. 1-1
Author(s):  
A.I. Alateyah
2007 ◽  
Vol 340-341 ◽  
pp. 913-917 ◽  
Author(s):  
Seung Chae Yoon ◽  
Young Gi Jeong ◽  
Sun Ig Hong ◽  
Byong Sun Chun ◽  
Hong Rho Lee ◽  
...  

Mg and Mg alloys are promising materials for light weight high strength applications. In this paper, grain refinement of pure Mg using severe plastic deformation was tried to enhance mechanical properties of the hard-to-deform metallic material. The microstructure and the mechanical properties of Mg processed by equal channel angular pressing (ECAP) at various processing temperatures were investigated experimentally. ECAP of channel angle of 90o and corner angle of 0o was successful without fracture of the samples at 300 oC. The hardness of the ECAP processed Mg decreased with increasing ECAP processing temperature. The effect of temperature on the hardness and microstructure of the ECAP processed Mg were explained by the dislocation glide in the basal plane and non-basal slip systems and the dynamic recrystallization and recovery.


Alloy Digest ◽  
2008 ◽  
Vol 57 (3) ◽  

Abstract Ansonia alloy C14500 has unique fabrication properties while maintaining both physical and mechanical properties close to pure copper. The addition of Tellurium makes the alloy free machining. This datasheet provides information on composition, physical properties, hardness, tensile properties, and shear strength. It also includes information on forming, heat treating, machining, and joining. Filing Code: CU-752. Producer or source: Ansonia Copper & Brass Inc.


2020 ◽  
Vol 57 (3) ◽  
pp. 249-259
Author(s):  
Baifen Liu ◽  
Mohammad Mirjalili ◽  
Peiman Valipour ◽  
Sajad Porzal ◽  
shirin Nourbakhsh

This research deals with the mechanical properties, microstructure, and interrelations of triple nanocomposite based on PET/EPDM/Nanoclay. These properties were examined in different percentages of PET/EPDM blend with compatibilizer (Styrene-Ethylene/Butylene-Styrene)-G-(Maleic anhydrate) (SEBS-g-MAH). Results showed that the addition of 15% SEBS-g-MAH improved the toughness and impact strength of this nanocomposite. SEM micrographs indicated the most stable fuzzy microstructure in a 50/50 mixture of scattered phases of EPDM/SEBS-g-MAH. The effects of percentages of 1, 3, 5, 7 nanoclay Cloisite 30B (C30B) on the improvement of the properties were evaluated. With the addition of nano clay, the toughness and impact strength was reduced. Thermal destruction of nanoclay in processing temperature led to the decreasing dispersion of clay plates in the matrix and a reduction in the distances of nano clay plates in the composite compared to pure nano clay. XRD and TEM analysis was used to demonstrate the results. By adding 1% of nanoclay to the optimal sample, maximum stiffness, and Impact strength, among other nanocomposites, was achieved.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 607
Author(s):  
A. I. Alateyah ◽  
Mohamed M. Z. Ahmed ◽  
Yasser Zedan ◽  
H. Abd El-Hafez ◽  
Majed O. Alawad ◽  
...  

The current study presents a detailed investigation for the equal channel angular pressing of pure copper through two regimes. The first was equal channel angular pressing (ECAP) processing at room temperature and the second was ECAP processing at 200 °C for up to 4-passes of route Bc. The grain structure and texture was investigated using electron back scattering diffraction (EBSD) across the whole sample cross-section and also the hardness and the tensile properties. The microstructure obtained after 1-pass at room temperature revealed finer equiaxed grains of about 3.89 µm down to submicrons with a high density of twin compared to the starting material. Additionally, a notable increase in the low angle grain boundaries (LAGBs) density was observed. This microstructure was found to be homogenous through the sample cross section. Further straining up to 2-passes showed a significant reduction of the average grain size to 2.97 µm with observable heterogeneous distribution of grains size. On the other hand, increasing the strain up to 4-passes enhanced the homogeneity of grain size distribution. The texture after 4-passes resembled the simple shear texture with about 7 times random. Conducting the ECAP processing at 200 °C resulted in a severely deformed microstructure with the highest fraction of submicron grains and high density of substructures was also observed. ECAP processing through 4-passes at room temperature experienced a significant increase in both hardness and tensile strength up to 180% and 124%, respectively.


2013 ◽  
Vol 829 ◽  
pp. 62-66 ◽  
Author(s):  
Alireza Fallahi ◽  
Hossein Hosseini-Toudeshky ◽  
Seyed Mahmoud Ghalehbandi

It is the objective of this study to investigate the effect of ECAP processing and heat treatment on the mechanical properties of the UFG 7075 alloy. Also the effect of post ECAP heat treatment is investigated. The alloy is processed by ECAP after annealing as well as solution treatment to produce an UFG structure. Furthermore mechanical properties and their variations during annealing and aging are investigated. The hardness of the pre-ECAP annealed and the pre-ECAP solutionised 7075 aluminum alloy has increased significantly compared with that of the CG sample. Also hardness of ECAPed specimen has not experienced significant changes in post-ECAP heat treatment and indicated that the alloy had approximately good thermal stability.


Polymer ◽  
2021 ◽  
pp. 123987
Author(s):  
Julie Bossu ◽  
Nicolas Le Moigne ◽  
Philippe Dieudonné-George ◽  
Loïc Dumazert ◽  
Valérie Guillard ◽  
...  

2011 ◽  
Vol 117-119 ◽  
pp. 394-397
Author(s):  
Jen Ching Huang ◽  
Yung Jin Weng

This study used the nanoindenter to perform indentation tests on copper bulk and nano copper film in order to discuss the mechanical properties of pure copper at the nano scale. This study tested 7 levels of load, ranging from 20 to 200 μN (load increment at 30 μN) for the indentation tests on copper bulk and nano copper film specimens. Results showed that the load was roughly proportional to the residual depth, in the case of flat nano copper film, while the relationship between the load and the residual depth was not significant in the case of unsmooth copper bulk. Moreover, the hardness of both the copper bulk and the nano copper film would increase along with increasing load, while the Er value change trends of both the copper bulk and the nano copper film specimens differed with increasing load.


Sign in / Sign up

Export Citation Format

Share Document