scholarly journals Biological effects of high-diluted substances and periodic table of elements

2021 ◽  
Vol 11 (40) ◽  
pp. 192-193
Author(s):  
Cloe Taddei-Ferretti

Background and Aims. There are several experimental evidences for the effects of high-diluted substances (see e.g. C. Taddei-Ferretti, A. Cotugno 1997, on effects of high-diluted drugs on the prevention and control of mice teratogenicity induced by purine derivatives; N.C. Sukul, C. Taddei-Ferretti, S.P. Sinha Babu, A. De, B. Nandi, A. Sukul, R. Dutta-Nag 2000, on high-diluted Nux vomica countering alcohol-induced loss of righting reflex in toads). Also the physical characterization and mechanism of action of high-diluted drugs have been studied (see e.g. N.C. Sukul, A. Sukul, High dilution effects: Physical and biochemical basis 2004). However, further experimental researches are needed to clarify how physical characteristics of a drug are linked to its global biological effects. Considerations on some high-diluted mineral remedies will be developer here. Methods. In Organon, sect. 119, S. Hahnemann writes: «As certainly each species of plants is different from every other one with regard to external appearance, way of life and growth, taste and smell, and as certainly each mineral, each salt is different from the others with regard to external, internal, physical and chemical qualities [...], so certainly all these vegetal and mineral substances have pathogenetic – and thus also curative – effects different among themselves [...]». This statement may be taken as basis for considering the characteristics of some elements, as ordered in the periodic table, in relation to those of some high-diluted mineral remedies. Conclusions. The elements were previously ordered in the periodic table according to the atomic weight chemically determined, and later more precisely according to the atomic number (number of protons). Then also the electronic configuration was taken into account: properties depending on atomic mass and deep electrons are not periodical, while chemical and several physical properties are linked to external electrons which have periodical configuration. In particular, let us consider the group of elements C, P, S, Cl and the group of elements Ca, Mg, K, Na. One may conclude that the four elements of the first group (respectively receiver-or-donor of 4 electrons, receiver of 3, of 2, of 1 electron), which, according to H. Bernard, are linked to the fixed human constitutions, are close among themselves in the periodic table, while they are very distant from the four elements of the second group (respectively donor of 2, of 2, of 1, of 1 electron), which are close among themselves and are linked to the changing constitutional stages.

2019 ◽  
Vol 130 (3) ◽  
pp. 423-434 ◽  
Author(s):  
Renjini Ramadasan-Nair ◽  
Jessica Hui ◽  
Leslie S. Itsara ◽  
Philip G. Morgan ◽  
Margaret M. Sedensky

Abstract Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New Background In mice, restriction of loss of the mitochondrial complex I gene Ndufs4 to glutamatergic neurons confers a profound hypersensitivity to volatile anesthetics similar to that seen with global genetic knockout of Ndufs4. Astrocytes are crucial to glutamatergic synapse functioning during excitatory transmission. Therefore, the authors examined the role of astrocytes in the anesthetic hypersensitivity of Ndufs4(KO). Methods A tamoxifen-activated astrocyte-specific Ndufs4(KO) mouse was constructed. The specificity of the astrocyte-specific inducible model was confirmed by using the green fluorescent protein reporter line Ai6. Approximately 120 astrocyte-specific knockout and control mice were used for the experiments. Mice were anesthetized with varying concentrations of isoflurane or halothane; loss of righting reflex and response to a tail clamp were determined and quantified as the induction and emergence EC50s. Because norepinephrine has been implicated in emergence from anesthesia and astrocytes respond to norepinephrine to release gliotransmitters, the authors measured norepinephrine levels in the brains of control and knockout Ndufs4 animals. Results The induction EC50s for tail clamp in both isoflurane and halothane were similar between the control and astrocyte-specific Ndufs4(KO) mice at 3 weeks after 4-hydroxy tamoxifen injection (induction concentration, EC50(ind)—isoflurane: control = 1.27 ± 0.12, astrocyte-specific knockout = 1.21 ± 0.18, P = 0.495; halothane: control = 1.28 ± 0.05, astrocyte-specific knockout = 1.20 ± 0.05, P = 0.017). However, the emergent concentrations in both anesthetics for the astrocyte-specific Ndufs4(KO) mice were less than the controls for tail clamp; (emergence concentration, EC50(em)—isoflurane: control = 1.18 ± 0.10, astrocyte-specific knockout = 0.67 ± 0.11, P < 0.0001; halothane: control = 1.08 ± 0.09, astrocyte-specific knockout = 0.59 ± 0.12, P < 0.0001). The induction EC50s for loss of righting reflex were also similar between the control and astrocyte-specific Ndufs4(KO) mice (EC50(ind)—isoflurane: control = 1.02 ± 0.10, astrocyte-specific knockout = 0.97 ± 0.06, P = 0.264; halothane: control = 1.03 ± 0.05, astrocyte-specific knockout = 0.99 ± 0.08, P = 0.207). The emergent concentrations for loss of righting reflex in both anesthetics for the astrocyte-specific Ndufs4(KO) mice were less than the control (EC50(em)—isoflurane: control = 1.0 ± 0.07, astrocyte-specific knockout = 0.62 ± 0.12, P < 0.0001; halothane: control = 1.0 ± 0.04, astrocyte-specific KO = 0.64 ± 0.09, P < 0.0001); N ≥ 6 for control and astrocyte-specific Ndufs4(KO) mice. For all tests, similar results were seen at 7 weeks after 4-hydroxy tamoxifen injection. The total norepinephrine content of the brain in global or astrocyte-specific Ndufs4(KO) mice was unchanged compared to control mice. Conclusions The only phenotype of the astrocyte-specific Ndufs4(KO) mouse was a specific impairment in emergence from volatile anesthetic-induced general anesthesia. The authors conclude that normal mitochondrial function within astrocytes is essential for emergence from anesthesia.


Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 524
Author(s):  
Philip Pietrek ◽  
Manfred Kraut ◽  
Roland Dittmeyer

Immobilized multi-enzyme cascades are increasingly used in microfluidic devices. In particular, their application in continuous flow reactors shows great potential, utilizing the benefits of reusability and control of the reaction conditions. However, capitalizing on this potential is challenging and requires detailed knowledge of the investigated system. Here, we show the application of computational methods for optimization with multi-level reactor design (MLRD) methodology based on the underlying physical and chemical processes. We optimize a stereoselective reduction of a diketone catalyzed by ketoreductase (Gre2) and Nicotinamidadenindinukleotidphosphat (NADPH) cofactor regeneration with glucose dehydrogenase (GDH). Both enzymes are separately immobilized on magnetic beads forming a packed bed within the microreactor. We derive optimal reactor feed concentrations and enzyme ratios for enhanced performance and a basic economic model in order to maximize the techno-economic performance (TEP) for the first reduction of 5-nitrononane-2,8-dione.


2000 ◽  
Vol 71 (1) ◽  
pp. 111-117 ◽  
Author(s):  
M. Marchetti ◽  
M. Tassinari ◽  
S. Marchetti

AbstractWhen compared with other menadione derivatives such as menadione sodium bisulphite (MSB), menadione nicotinamide bisulphite (MNB), an organic salt combining menadione and nicotinamide, shows better stability towards physical and chemical factors once it is added to pre-mixes or foods. The present work evaluates the bioavailability of the two vitamins present in this compound and toxicity in the pig. To assess vitamin bioavailability, pigs were given small amounts of food containing MNB or equivalent amounts of MSB and nicotinamide in the free form. Menadione and nicotinamide concentrations in blood samples drawn at set times after the diets were given did not reveal any significant differences between the two modes of administration. Haematic levels of both vitamins in animals receiving MNB, or MSB and nicotinamide, were after 2, 4, 8 and 12 h higher (P < 0·001) than those of untreated animals. The tolerance level to MNB was evaluated in pigs given diets containing graded amounts of MNB (100, 500, 2500 mg/kg) for 28 days. No significant (P > 0·05) differences were recorded in live weight, food intake and gain/food ratio in pigs given these diets when compared with those given an unsupplemented diet. Haemoglobin and bilirubin levels did not differ between animals given various amounts of MNB and control animals. Plasma aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities in pigs given 100 mg/kg of MNB did not show significant differences when compared with those observed in pigs given an unsupplemented control diet. In pigs on the diets supplemented with 500 and 2500 mg/kg of MNB there was a significant increase in the two enzymatic activities as compared with controls (P < 0·001 and P < 0·01). In the case of ALT this had disappeared by 28 weeks. MNB is a good source of vitamin K for the pig and does not appear to have any adverse effects, even when administered at levels higher than those normally used in pig food supplementation.


Author(s):  
Meghan M. Louis ◽  
Gregory Scott ◽  
Dustin Smith ◽  
Brigid V. Troan ◽  
Larry J. Minter ◽  
...  

Euthanasia techniques in amphibians are poorly described and sparsely validated. This study investigated potassium chloride (KCl) for euthanasia of anesthetized marine toads ( Rhinella marina ). Twenty three toads were immersed in buffered MS-222 (2 g/L) for five minutes (min) beyond loss of righting reflex, manually removed, and randomly administered KCl (n = 6/group) via one of three routes: intracardiac at 10 mEq/kg (IC), intracoelomic at 100 mEq/kg (ICe), or immersion at 4500 mEq/L (IMS) or no treatment (C) (n = 5/group). Doppler sounds were assessed continuously from prior to treatment until two min post-treatment and every five min thereafter until sound cessation or resumption of spontaneous movement. Plasma potassium concentration (K+) was measured at the time of Doppler sound cessation in ICe and IMS. In IC, ICe, IMS, and C, Doppler sound cessation occurred in 4/6, 6/6, 6/6, and 1/5 toads with median (range) or mean + SD times of 0.23 (0-4.65), 17.5 + 9.0, 40.6 + 10.9, and &gt;420 min, respectively. Nonsuccess in 2/6 toads in IC was suspected due to technique failure. Plasma K+ exceeded the limits of detection (&gt;9 mmol/L) in 12/12 toads in ICe and IMS. Five of six toads in C resumed spontaneous movement at median (range) times of 327 (300-367) min. KCl delivered via an intracardiac, intracoelomic, or immersion routes resulted in Doppler sound cessation in 16 of 18 toads and may be appropriate for euthanasia of anesthetized marine toads.


2000 ◽  
Vol 93 (3) ◽  
pp. 837-843 ◽  
Author(s):  
Robert Dickinson ◽  
Ian White ◽  
William R. Lieb ◽  
Nicholas P. Franks

Background Although it is accepted widely that optically active intravenous general anesthetics produce stereoselective effects in animals, the situation regarding volatile agents is confused. Conventional studies with scarce isoflurane enantiomers have been limited to small numbers of animals and produced conflicting results. By injecting these volatile enantiomers intravenously, however, it is possible to study large numbers of animals and obtain reliable results that can help to identify the molecular targets for isoflurane. Methods Pure isoflurane enantiomers were administered intravenously to rats after solubilization in a lipid emulsion. The ability of each enantiomer to produce a loss of righting reflex was determined as a function of dose, and quantal dose-response curves were constructed. In addition, sleep times were recorded with each enantiomer. Chiral gas chromatography was used to measure relative enantiomer concentrations in the brains of rats injected with racemic isoflurane. Results The S(+)-enantiomer was 40 +/- 8% more potent than the R(-)-enantiomer at producing a loss of righting reflex. The S(+)-enantiomer induced longer sleep times (by about 50%) than did the R(-)-enantiomer. Rats anesthetized by a dose of racemic isoflurane sufficient to achieve a half-maximal effect had essentially identical brain concentrations of the two enantiomers. Conclusions The S(+)-enantiomer of the general anesthetic isoflurane is significantly (P &lt; 0.001) more potent than the R(-)-enantiomer at causing a loss of righting reflex in rats. This confirms the view that isoflurane acts by binding to chiral sites. The observed degree of stereoselectivity provides a useful guide for ascertaining from in vitro experiments which molecular targets are most likely to play major roles in the loss of righting reflex caused by isoflurane.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11768
Author(s):  
Xuejiang Zhang ◽  
Dazhao Yu ◽  
Hua Wang

Pepper root rot is a serious soil-borne disease that hinders pepper production, and efforts are being made to identify biological agents that can prevent and control pepper root rot. Our group recently discovered and produced a biological agent, named G15, which reduces the diversity and richness of fungi and bacteria when applied to pepper fields. In the soil of the G15-treatment condition, the pathogenic fungus Fusarium was inhibited, while the richness of beneficial bacteria Rhodanobacter was increased. Also, the ammonia nitrogen level was decreased in the G15-treatment soil, and the pH, total carbon, and total potassium levels were increased. Compared to the control condition, pepper yield was increased in the treatment group (by 16,680 kg acre−1). We found that G15 could alter the microbial community structure of the pepper rhizosphere. These changes alter the physical and chemical properties of the soil and, ultimately, improve resistance to pepper root rot and increase pepper yield.


Author(s):  
Linlin Shi ◽  
Ping Zhang ◽  
Qi Chen ◽  
Cancan Yang ◽  
Daqi Zhang ◽  
...  

Pesticide pollution has gradually caused land degradation. In order to avoid this problem, it is recommended to use enantiomeric pesticides that have less impact on the soil. The degradation of CYF enantiomers and the effect on soil functions are closely related to microorganisms. (+)-CYF enantiomer is degradable preferred and further discovered that related microorganism that degrades enantiomers. CYF enantiomers alter the bacteria structure and decreased the bacteria abundance. The combination of high-throughput and quantitative PCR results showed that the diversity of the (+)-CYF treatment was significantly lower than that of the (-)-CYF (-30.41 to 44.60) treatment and the (+)-CYF treatment (-27.80 to 56.70%) was more capable of causing the decrease in the number of soil microorganisms. In addition, (+)-CYF severely interferes with nitrogen cycling-related functions. Furthermore, the soil microbial structure was changed to its original level by enantiomers posed. In the study of nitrogen cycle function, we found that both enantiomers can restrain the abundance of nitrogen cycle-related genes, especially the (+)-CYF treatment decreased more. CCA showed that g-Massilia and g-Arthrobacter are closely related to nitrogen fixation genes and nitrification genes and degradation of the two enantiomers of CYF by g-Arthrobacter is closely related. The biological effects of cyflumetofen enantiomers remain unclear. Bioassay results show that enantiomers have similar virulence to Tetranychus cinnabarinus. Therefore, while achieving the prevention and control effect, the use of a single isomer (+)-CYF has a higher potential risk to the soil ecosystem.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Jianshe Yang

AbstractThis highlight presents a recent technique of “Light Vaccine” for COVID-19 pandemic control. Though this technique has the germicidal advantage to SARS-CoV-2, its shortcomings will limit the wide and in-depth application. We make a perspective of real nano light vaccine, which will play an important role in the prevention and control of COVID-19. Briefly, This flow chart described the MWCNT was fabricated with strong acid and base conditional mixture in order to achieve the p-WCNT (chemical process); then modified with RNA layse and receptor binding domain (RBD) by covalent conjugation and physical absorption to get f-WCNT (functionalization); thereafter, f-WCNT was used in the multi-cell culture system interacting with SARS-CoV-2 to identify the special affinity of f-WCNT to ACE2 labeled alveolar type II cells and the inhibition capacity to SARS-CoV-2. This design, is different from the so called “light vaccine”, has the real function to against SARS-CoV-2 by local cellular temperature-rising through photothermal conversion under the near infrared (NIR) light irradiation, according to the physical and chemical nature of carbon nanotubes, and initiates the immune response consequently.


2021 ◽  
Vol 13 (1) ◽  
pp. 80-87
Author(s):  
Minghao Li ◽  
Yu Li

Flame retardants are widely used in many materials and products, and there is a pressing need to enhance the performance of flame retardants while lowering their toxicity. In this paper, using polychlorinated biphenyl flame retardants as an example, a three-dimensional quantitative structure-double-activity relationship (3D-QSA2R) model, with the double activities of flame retardancy and toxicity, was constructed by introducing a vector normalized method to achieve the goal of environmental risk management and control the sources of chemicals. The results showed that the 3D-QSA2R model has good robustness and strong predictive ability. PCB-209 was used as a target molecule for the contour map analysis and molecular modification. The comprehensive values (C) of six novel PCB-209 molecules were increased by up to 53.61%. The physical and chemical parameters (frequency and Gibbs free energy), functional properties (stability and insulation) and the other three POP properties of the novel PCB-209 molecules showed that the Cl atom substitution reaction of PCB209 molecules could occur and exist stably in the environment. With improvement in stability, the insulation of six novel PCB-209 molecules was not influenced after modification, and the environmental persistence, bioconcentration and long-distance migration of six novel PCB-209 molecules were increased up to 99.47%, 15.29% and 100.9%, respectively. The flame retardancy and toxicity of the new molecules were verified by Gaussian software and the EPI database, respectively. The single activity verification values of flame retardancy and toxicity followed the trend of C values predicted by the double-activity 3D-QSA2R model established in this paper. The ratio between the two single activities of the new PCB-209 molecule generally conformed to the weight setting, which satisfies the purpose of setting the weight as the main way to improve the efficacy of flame retardants.


Sign in / Sign up

Export Citation Format

Share Document