scholarly journals Regional background O<sub>3</sub> and NO<sub><i>x</i></sub> in the Houston–Galveston–Brazoria (TX) region: a decadal-scale perspective

2017 ◽  
Vol 17 (11) ◽  
pp. 6565-6581 ◽  
Author(s):  
Loredana G. Suciu ◽  
Robert J. Griffin ◽  
Caroline A. Masiello

Abstract. Ozone (O3) in the lower troposphere is harmful to people and plants, particularly during summer, when photochemistry is most active and higher temperatures favor local chemistry. Local precursor emissions, such as those of volatile organic compounds (VOCs) and nitrogen oxides (NOx), together with their chemistry contribute to the O3 and NOx mixing ratios in the Houston–Galveston–Brazoria (HGB) region. In addition to local emissions, chemistry and transport, larger-scale factors also contribute to local O3 and NOx. These additional contributions (often referred to as regional background) are not well quantified within the HGB region, impeding more efficient controls on precursor emissions to achieve compliance with the National Ambient Air Quality Standards for O3. In this study, we estimate ground-level regional background O3 and NOx in the HGB region and quantify their decadal-scale trends.We use four different approaches based on principal component analysis (PCA) to quantify background O3 and NOx. Three of these approaches consist of independent PCA on both O3 and NOx for both 1 and 8 h levels to compare our results with previous studies and to highlight the effect of both temporal and spatial scales. In the fourth approach, we co-varied O3, NOx and meteorology.Our results show that the estimation of regional background O3 has less inherent uncertainty when it was constrained by NOx and meteorology, yielding a statistically significant temporal trend of −0.68 ± 0.27 ppb yr−1. Likewise, the estimation of regional background NOx trend constrained by O3 and meteorology was −0.04 ± 0.02 ppb yr−1 (upper bound) and −0.03 ± 0.01 ppb yr−1 (lower bound). Our best estimates of the 17-year average of season-scale background O3 and NOx were 46.72 ± 2.08 ppb and 6.80 ± 0.13 ppb (upper bound) or 4.45 ± 0.08 ppb (lower bound), respectively. Average background O3 is consistent with previous studies and between the approaches used in this study, although the approaches based on 8 h averages likely overestimate background O3 compared to the hourly median approach by 7–9 ppb. Similarly, the upper bound of average background NOx is consistent between approaches in this study (A–C) but overestimated compared to the hourly approach by 1 ppb, on average. We likely overestimate the upper-bound background NOx due to instrument overdetection of NOx and the 8 h averaging of NOx and meteorology coinciding with MDA8 O3.Regional background O3 and NOx in the HGB region both have declined over the past 2 decades. This decline became steadier after 2007, overlapping with the effects of controlling precursor emissions and a prevailing southeasterly–southerly flow.

2016 ◽  
Author(s):  
Loredana G. Suciu ◽  
Robert J. Griffin ◽  
Caroline A. Masiello

Abstract. Ozone (O3) in the lower troposphere is harmful to people and plants, particularly during summer, when photochemistry is the most active and higher temperatures favor local chemistry. Because of its dependence on the volatile organic compounds (VOCs) to nitrogen oxides (NOx) ratio, ground-level O3 is difficult to control locally, where many sources of these precursors contribute to its mixing ratio. In addition to local emissions, chemistry and transport, larger-scale factors also contribute to local O3 and NOx. These additional contributions (often referred to as "regional background") are not well quantified within the Houston-Galveston-Brazoria (HGB) region, impeding more efficient controls on precursor emissions to achieve compliance with the National Ambient Air Quality Standards for O3. In this study, we estimate regional background O3 and NOx in the HGB region and quantify their decadal-scale trends. We use four different approaches based on principal component analysis (PCA) to quantify background O3 and NOx. Three of these approaches consist of independent PCA on both O3 and NOx for both 1-h and 8-h levels to compare our results with previous studies and to highlight the effect of both temporal and spatial scales. In the fourth approach, we co-varied O3, NOx and meteorology. Our results show that the estimation of regional background O3 has less inherent uncertainty when it was constrained by NOx and meteorology, yielding a statistically significant temporal trend of −0.69 ± 0.27 ppb y−1. Likewise, the estimation of regional background NOx trend constrained by O3 and meteorology was −0.04 ± 0.02 ppb y−1. Our best estimates of 17-y average of season-scale background O3 and NOx were 46.72 ± 2.08 ppb and 6.80 ± 0.13 ppb, respectively. Regional background O3 and NOx both have declined over time in the HGB region. This decline is likely caused by a combination of state of Texas controls on precursor emissions since 2007 and the increase in frequency of flow from the Gulf of Mexico over the same time period.


2018 ◽  
Vol 18 (9) ◽  
pp. 6293-6315 ◽  
Author(s):  
Hans D. Osthoff ◽  
Charles A. Odame-Ankrah ◽  
Youssef M. Taha ◽  
Travis W. Tokarek ◽  
Corinne L. Schiller ◽  
...  

Abstract. The nocturnal nitrogen oxides, which include the nitrate radical (NO3), dinitrogen pentoxide (N2O5), and its uptake product on chloride containing aerosol, nitryl chloride (ClNO2), can have profound impacts on the lifetime of NOx (= NO + NO2), radical budgets, and next-day photochemical ozone (O3) production, yet their abundances and chemistry are only sparsely constrained by ambient air measurements. Here, we present a measurement data set collected at a routine monitoring site near the Abbotsford International Airport (YXX) located approximately 30 km from the Pacific Ocean in the Lower Fraser Valley (LFV) on the west coast of British Columbia. Measurements were made from 20 July to 4 August 2012 and included mixing ratios of ClNO2, N2O5, NO, NO2, total odd nitrogen (NOy), O3, photolysis frequencies, and size distribution and composition of non-refractory submicron aerosol (PM1). At night, O3 was rapidly and often completely removed by dry deposition and by titration with NO of anthropogenic origin and unsaturated biogenic hydrocarbons in a shallow nocturnal inversion surface layer. The low nocturnal O3 mixing ratios and presence of strong chemical sinks for NO3 limited the extent of nocturnal nitrogen oxide chemistry at ground level. Consequently, mixing ratios of N2O5 and ClNO2 were low (< 30 and < 100 parts-per-trillion by volume (pptv) and median nocturnal peak values of 7.8 and 7.9 pptv, respectively). Mixing ratios of ClNO2 frequently peaked 1–2 h after sunrise rationalized by more efficient formation of ClNO2 in the nocturnal residual layer aloft than at the surface and the breakup of the nocturnal boundary layer structure in the morning. When quantifiable, production of ClNO2 from N2O5 was efficient and likely occurred predominantly on unquantified supermicron-sized or refractory sea-salt-derived aerosol. After sunrise, production of Cl radicals from photolysis of ClNO2 was negligible compared to production of OH from the reaction of O(1D) + H2O except for a short period after sunrise.


2011 ◽  
Vol 11 (14) ◽  
pp. 6971-6984 ◽  
Author(s):  
C. E. Jones ◽  
J. R. Hopkins ◽  
A. C. Lewis

Abstract. Biogenic volatile organic compounds (BVOCs) emitted from tropical rainforests comprise a substantial fraction of global atmospheric VOC emissions, however there are only relatively limited measurements of these species in tropical rainforest regions. We present observations of isoprene, α-pinene, camphene, Δ-3-carene, γ-terpinene and limonene, as well as oxygenated VOCs (OVOCs) of biogenic origin such as methacrolein, in ambient air above a tropical rainforest in Malaysian Borneo during the Oxidant and Particle Photochemical Processes above a south-east Asian tropical rainforest (OP3) project in 2008. Daytime composition was dominated by isoprene, with an average mixing ratio of the order of ~1 ppb. γ-terpinene, limonene and camphene were the most abundant monoterpenes, with average daytime mixing ratios of 102, 71 and 66 ppt respectively, and with an average monoterpene toisoprene ratio of 0.3 during sunlit hours, compared to 2.0 at night. Limonene and camphene abundances were seen to be related to both temperature and light conditions. In contrast, γ-terpinene emission continued into the late afternoon/evening, under relatively low temperature and light conditions. The contributions of isoprene, monoterpenes and other classes of VOC to the volatile carbon budget and OH reactivity have been summarised for this rainforest location. We observe good agreement between surface and aircraft measurements of boundary layer isoprene and methacrolein above the natural rainforest, suggesting that the ground-level observations are broadly representative of isoprene emissions from this region.


2020 ◽  
Author(s):  
Christian Mazelle ◽  
Bertrand Lembege

Abstract. The nonstationarity of the terrestrial bow shock is analyzed in detail from in situ magnetic field measurements issued from the FGM experiment on board of Cluster mission. Attention is focused on statistical analysis of quasiperpendicular supercritical shock crossings. The present analysis stresses for the first time the importance of a careful and accurate methodology in the data processing which can be a source of confusion/misunderstanding if not treated properly. The analysis performed using 96 shock front crossings shows evidence of a strong variability of the microstructures of the shock front (foot and ramp) which are analyzed in deep details. Main results are: (i) most statistics clearly evidence that the ramp thickness is very narrow and can be as low as a few c/ωpe (electron inertia length), (ii) the width is narrower when the angle θBn (between the shock normal and the upstream magnetic field) approaches 90°, (iii) the foot thickness strongly varies but its variation has an upper limit provided by theoretical estimates given in previous studies (e.g., Schwartz et al., 1983; Gosling and Thomsen, 1985; Gosling and Robson, 1985); (iv) the presence of foot and overshoot, as shown in all front profiles confirms the importance of dissipative effects. Present results indicate that these features can be signatures of the shock front self-reformation among a few mechanisms of nonstationarity identified from numerical simulation/theoretical works. A comparison 2D PIC simulation for a perpendicular supercritical shock (used as reference), has been performed and it shows that: (a) the ramp thickness varies only slightly in time over a large fraction of the reformation cycle and reaches a lower bound value of the order of a few electron inertial length, (ii) in contrast, the foot width strongly varies during a self-reformation cycle but always stays lower than an upper bound value in agreement with the value given by Woods (1971), and (iii) as a consequence, the time variability of the whole shock front is depending on both ramp and foot variations. Moreover, a detailed comparative analysis shows that much elements of analysis were missing in previous reported works concerning both (i) the important criteria used in the data selection and (ii) the different and careful steps of the methodology used in the data processing itself. This absence of these precise elements of analysis makes the comparison with present work difficult, worse, it makes some final results and conclusive statements quite questionable at present time. A least, looking for a precise estimate of the shock transition thickness presents nowadays a restricted interest, since recent results show that the terrestrial shock is rather nonstationary and one unique typical spatial scaling of the microstructures of the front (ramp, foot) must be replaced by some variation ranges (with lower bound/upper bound values) within which the spatial scales of the fine structures can extend.


2016 ◽  
Vol 113 (40) ◽  
pp. 11131-11136 ◽  
Author(s):  
Mang Lin ◽  
Lin Su ◽  
Robina Shaheen ◽  
Jimmy C. H. Fung ◽  
Mark H. Thiemens

The extent to which stratospheric intrusions on synoptic scales influence the tropospheric ozone (O3) levels remains poorly understood, because quantitative detection of stratospheric air has been challenging. Cosmogenic 35S mainly produced in the stratosphere has the potential to identify stratospheric air masses at ground level, but this approach has not yet been unambiguously shown. Here, we report unusually high 35S concentrations (7,390 atoms m−3; ∼16 times greater than annual average) in fine sulfate aerosols (aerodynamic diameter less than 0.95 µm) collected at a coastal site in southern California on May 3, 2014, when ground-level O3 mixing ratios at air quality monitoring stations across southern California (43 of 85) exceeded the recently revised US National Ambient Air Quality Standard (daily maximum 8-h average: 70 parts per billion by volume). The stratospheric origin of the significantly enhanced 35S level is supported by in situ measurements of air pollutants and meteorological variables, satellite observations, meteorological analysis, and box model calculations. The deep stratospheric intrusion event was driven by the coupling between midlatitude cyclones and Santa Ana winds, and it was responsible for the regional O3 pollution episode. These results provide direct field-based evidence that 35S is an additional sensitive and unambiguous tracer in detecting stratospheric air in the boundary layer and offer the potential for resolving the stratospheric influences on the tropospheric O3 level.


2021 ◽  
Vol 39 (4) ◽  
pp. 571-598
Author(s):  
Christian Mazelle ◽  
Bertrand Lembège

Abstract. The nonstationarity of the terrestrial bow shock is analyzed in detail from in situ magnetic field measurements issued from the fluxgate magnetometer (FGM) experiment of the Cluster mission. Attention is focused on statistical analysis of quasi-perpendicular supercritical shock crossings. The present analysis stresses for the first time the importance of a careful and accurate methodology in the data processing, which can be a source of confusion and misunderstanding if not treated properly. The analysis performed using 96 shock front crossings shows evidence of a strong variability of the microstructures of the shock front (foot and ramp), which are analyzed in great detail. The main results are that (i) most statistics clearly show that the ramp thickness is very narrow and can be as low as a few c/ωpe (electron inertia length); (ii) the width is narrower when the angle θBn (between the shock normal and the upstream magnetic field) approaches 90∘; (iii) the foot thickness strongly varies, but its variation has an upper limit provided by theoretical estimates given in previous studies (e.g., Schwartz et al., 1983; Gosling and Thomsen, 1985; Gosling and Robson, 1985); and (iv) the presence of foot and overshoot, as shown in all front profiles, confirms the importance of dissipative effects. Present results indicate that these features can be signatures of the shock front self-reformation among a few mechanisms of nonstationarity identified from numerical simulation and theoretical studies. A comparison with 2D particle-in-cell (PIC) simulation for a perpendicular supercritical shock (used as reference) has been performed and shows the following: (a) the ramp thickness varies only slightly in time over a large fraction of the reformation cycle and reaches a lower-bound value on the order of a few electron inertial length; (b) in contrast, the foot width strongly varies during a self-reformation cycle but always stays lower than an upper-bound value in agreement with the value given by Woods (1971); and (c) as a consequence, the time variability of the whole shock front is depending on both ramp and foot variations. Moreover, a detailed comparative analysis shows that many elements of analysis were missing in previous reported studies concerning both (i) the important criteria used in the data selection and (ii) the different and careful steps of the methodology used in the data processing itself. The absence of these precise elements of analysis makes the comparison with the present work difficult; worse, it makes some final results and conclusive statements quite questionable at the present time. At least, looking for a precise estimate of the shock transition thickness presents nowadays a restricted interest, since recent results show that the terrestrial shock is rather nonstationary, and one unique typical spatial scaling of the microstructures of the front (ramp, foot) must be replaced by some “variation ranges” (with lower-bound and upper-bound values) within which the spatial scales of the fine structures can extend.


2011 ◽  
Vol 11 (1) ◽  
pp. 1189-1218 ◽  
Author(s):  
C. E. Jones ◽  
J. R. Hopkins ◽  
A. C. Lewis

Abstract. Biogenic volatile organic compounds (BVOCs) emitted from tropical rainforests comprise a substantial fraction of global atmospheric VOC emissions, however there are only relatively limited measurements of these species in tropical rainforest regions. We present observations of isoprene, α-pinene, camphene, Δ-3-carene, γ-terpinene and limonene, and oxygenated VOCs (OVOCs) of biogenic origin such as methacrolein, in ambient air above a~tropical rainforest in Malaysian Borneo. Daytime composition was dominated by isoprene, with an average mixing ratio of the order of ~1 ppb. γ-terpinene, limonene and camphene were the most abundant monoterpenes, with average daytime mixing ratios of 102, 71 and 66 ppt, respectively, and with an average monoterpene to isoprene ratio of 0.3 during sunlight hours, compared to 2.0 at night. Limonene and camphene abundances were seen to be related to both temperature and light conditions. In contrast, γ-terpinene emission occurred into the late afternoon/evening, under relatively low temperature and light conditions. We observe good agreement between surface and aircraft measurements of boundary layer isoprene and methacrolein above the natural rainforest, suggesting that the ground-level observations are broadly representative of isoprene emissions from this region.


2009 ◽  
Vol 9 (5) ◽  
pp. 21111-21164 ◽  
Author(s):  
E. Chan ◽  
R. J. Vet

Abstract. Planetary boundary layer (PBL) ozone temporal variations were investigated on diurnal, seasonal and decadal scales in various regions across Canada and the United States for the period 1997–2006. Background ozone is difficult to quantify and define through observations. In light of the importance of its estimates for achievable policy targets, evaluation of health impacts and relationship with climate, background ozone mixing ratios were estimated. Principal Component Analyses (PCA) were performed using 97 non-urban ozone sites for each season to define contiguous regions. Backward air parcel trajectories were used to systematically select the cleanest background air cluster associated with the lowest May–September 95th percentile for each site. Decadal ozone trends were estimated by season for each PCA-derived region using a~generalized linear mixed model (GLMM). Background ozone mixing ratios were variable geographically and seasonally. For example, the mixing ratios annually ranged from 21 to 38, and 23 to 38 ppb for the continental Eastern Canada and Eastern US. The Pacific and Atlantic coastal regions typically had relatively low background levels ranging from 14 to 24, and 17 to 36 ppb, respectively. On the decadal scale, the direction and magnitude of trends are different in all seasons across the regions (−1.56 to +0.93 ppb/a). Trends increased in the Pacific region for all seasons. Background ozone decadal changes are shown to be masked by the much stronger regional signals in areas that have seen substantial reductions of ozone precursors since the early 2000s.


Atmosphere ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 4
Author(s):  
Marc L. Mansfield ◽  
Seth N. Lyman

High concentrations of ground-level ozone have been observed during wintertime in the Uinta Basin of western Utah, USA, beginning in 2010. We analyze existing ozone and ozone precursor concentration data from 38 sites over 11 winter seasons and conclude that there has been a statistically significant (p < 0.02) decline in ozone concentration over the previous decade. Daily exceedances of the National Ambient Air Quality Standard for ozone (70 ppb) have been trending downward at the rate of nearly four per year. Ozone and NOx concentrations have been trending downward at the rates of about 3 and 0.3 ppb per year, respectively. Concentrations of organics in 2018 were at about 30% of their values in 2012 or 2013. Several markers, annual ozone exceedance counts and median ozone and NOx concentrations, were at their largest values in the period 2010 to 2013 and have never recovered since then. We attribute the decline to (1) weakening global demand for oil and natural gas and (2) more stringent pollution regulations and controls, both of which have occurred over the previous decade. We also see evidence of ozone titration when snow cover is absent.


2019 ◽  
Author(s):  
Heiko Bozem ◽  
Peter Hoor ◽  
Daniel Kunkel ◽  
Franziska Köllner ◽  
Johannes Schneider ◽  
...  

Abstract. The springtime composition of the Arctic lower troposphere is to a large extent controlled by transport of mid-latitude air masses into the Arctic, whereas during the summer precipitation and natural sources play the most important role. Within the Arctic region, there exists a transport barrier, known as the polar dome, which results from sloping isentropes. The polar dome, which varies in space and time, exhibits a strong influence on the transport of air masses from mid-latitudes, enhancing it during winter and inhibiting it during summer. Furthermore, a definition for the location of the polar dome boundary itself is quite sparse in the literature. We analyzed aircraft based trace gas measurements in the Arctic during two NETCARE airborne field camapigns (July 2014 and April 2015) with the Polar 6 aircraft of Alfred Wegener Institute Helmholtz Center for Polar and Marine Research (AWI), Bremerhaven, Germany, covering an area from Spitsbergen to Alaska (134° W to 17° W and 68° N to 83° N). For the spring (April 2015) and summer (July 2014) season we analyzed transport regimes of mid-latitude air masses travelling to the high Arctic based on CO and CO2 measurements as well as kinematic 10-day back trajectories. The dynamical isolation of the high Arctic lower troposphere caused by the transport barrier leads to gradients of chemical tracers reflecting different local chemical life times and sources and sinks. Particularly gradients of CO and CO2 allowed for a trace gas based definition of the polar dome boundary for the two measurement periods with pronounced seasonal differences. For both campaigns a transition zone rather than a sharp boundary was derived. For July 2014 the polar dome boundary was determined to be 73.5° N latitude and 299–303.5 K potential temperature, respectively. During April 2015 the polar dome boundary was on average located at 66–68.5° N and 283.5–287.5 K. Tracer-tracer scatter plots and probability density functions confirm different air mass properties inside and outside of the polar dome for the July 2014 and April 2015 data set. Using the tracer derived polar dome boundaries the analysis of aerosol data indicates secondary aerosol formation events in the clean summertime polar dome. Synoptic-scale weather systems frequently disturb this transport barrier and foster exchange between air masses from midlatitudes and polar regions. During the second phase of the NETCARE 2014 measurements a pronounced low pressure system south of Resolute Bay brought inflow from southern latitudes that pushed the polar dome northward and significantly affected trace gas mixing ratios in the measurement region. Mean CO mixing ratios increased from 77.9 ± 2.5 ppbv to 84.9 ± 4.7 ppbv from the first period to the second period. At the same time CO2 mixing ratios significantly dropped from 398.16 ± 1.01 ppmv to 393.81 ± 2.25 ppmv. We further analysed processes controlling the recent transport history of air masses within and outside the polar dome. Air masses within the spring time polar dome mainly experienced diabatic cooling while travelling over cold surfaces. In contrast air masses in the summertime polar dome were diabatically heated due to insolation. During both seasons air masses outside the polar dome slowly descended into the Arctic lower troposphere from above caused by radiative cooling. The ascent to the middle and upper troposphere mainly took place outside the Arctic, followed by a northward motion. Our results demonstrate the successful application of a tracer based diagnostic to determine the location of the polar dome boundary.


Sign in / Sign up

Export Citation Format

Share Document