scholarly journals Changes to the chemical state of the Northern Hemisphere atmosphere during the second half of the twentieth century

2017 ◽  
Vol 17 (13) ◽  
pp. 8269-8283 ◽  
Author(s):  
Mike J. Newland ◽  
Patricia Martinerie ◽  
Emmanuel Witrant ◽  
Detlev Helmig ◽  
David R. Worton ◽  
...  

Abstract. The NOx (NO and NO2) and HOx (OH and HO2) budgets of the atmosphere exert a major influence on atmospheric composition, controlling removal of primary pollutants and formation of a wide range of secondary products, including ozone, that can influence human health and climate. However, there remain large uncertainties in the changes to these budgets over recent decades. Due to their short atmospheric lifetimes, NOx and HOx are highly variable in space and time, and so the measurements of these species are of limited value for examining long-term, large-scale changes to their budgets. Here, we take an alternative approach by examining long-term atmospheric trends of alkyl nitrates, the production efficiency of which is dependent on the atmospheric [NO] ∕ [HO2] ratio. We derive long-term trends in the alkyl nitrates from measurements in firn air from the NEEM site, Greenland. Their mixing ratios increased by a factor of 3–5 between the 1970s and 1990s. This was followed by a steep decline to the sampling date of 2008. Moreover, we examine how the trends in the alkyl nitrates compare to similarly derived trends in their parent alkanes (i.e. the alkanes which, when oxidised in the presence of NOx, lead to the formation of the alkyl nitrates). The ratios of the alkyl nitrates to their parent alkanes increased from around 1970 to the late 1990s. This is consistent with large changes to the [NO] ∕ [HO2] ratio in the Northern Hemisphere atmosphere during this period. Alternatively, they could represent changes to concentrations of the hydroxyl radical, OH, or to the transport time of the air masses from source regions to the Arctic.

2016 ◽  
Author(s):  
Mike J. Newland ◽  
Patricia Martinerie ◽  
Emmanuel Witrant ◽  
Detlev Helmig ◽  
David R. Worton ◽  
...  

Abstract. The NOX (NO and NO2) and HOX (OH and HO2) budgets of the atmosphere exert a major influence on atmospheric composition, controlling removal of primary pollutants and formation of a wide range of secondary products, including ozone, that can influence human health and climate. However, there remain large uncertainties in the changes to these budgets over recent decades. Due to their short atmospheric lifetimes, NOX and HOX are highly variable in space and time, and so the measurements of these species are of very limited value for examining long term, large scale changes to their budgets. Here, we take an alternative approach by examining long-term atmospheric trends of alkyl nitrates, the formation of which is dependent on the atmospheric NO / HO2 ratio. We derive long term trends in the alkyl nitrates from measurements in firn air from the NEEM site, Greenland. Their mixing ratios increased by a factor of 4–5 between the 1970s and 1990s. This was followed by a steep decline to the sampling date of 2008. Moreover, we examine how the trends in the alkyl nitrates compare to similarly derived trends in their parent alkanes (i.e. the alkanes which, when oxidised in the presence of NOX, lead to the formation of the alkyl nitrates). The ratios of the alkyl nitrates to their parent alkanes increase from around 1970 to the late 1990's consistent with large changes to the [NO] / [HO2] ratio in the northern hemisphere atmosphere during this period. These could represent historic changes to NOX sources and sinks. Alternatively, they could represent changes to concentrations of the hydroxyl radical, OH, or to the transport time of the air masses from source regions to the Arctic.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Sungmin O. ◽  
Rene Orth

AbstractWhile soil moisture information is essential for a wide range of hydrologic and climate applications, spatially-continuous soil moisture data is only available from satellite observations or model simulations. Here we present a global, long-term dataset of soil moisture derived through machine learning trained with in-situ measurements, SoMo.ml. We train a Long Short-Term Memory (LSTM) model to extrapolate daily soil moisture dynamics in space and in time, based on in-situ data collected from more than 1,000 stations across the globe. SoMo.ml provides multi-layer soil moisture data (0–10 cm, 10–30 cm, and 30–50 cm) at 0.25° spatial and daily temporal resolution over the period 2000–2019. The performance of the resulting dataset is evaluated through cross validation and inter-comparison with existing soil moisture datasets. SoMo.ml performs especially well in terms of temporal dynamics, making it particularly useful for applications requiring time-varying soil moisture, such as anomaly detection and memory analyses. SoMo.ml complements the existing suite of modelled and satellite-based datasets given its distinct derivation, to support large-scale hydrological, meteorological, and ecological analyses.


2006 ◽  
Vol 63 (3) ◽  
pp. 401-420 ◽  
Author(s):  
Harald Yndestad

Abstract The Arctic Ocean is a substantial energy sink for the northern hemisphere. Fluctuations in its energy budget will have a major influence on the Arctic climate. The paper presents an analysis of the time-series for the polar position, the extent of Arctic ice, sea level at Hammerfest, Kola section sea temperature, Røst winter air temperature, and the NAO winter index as a way to identify a source of dominant cycles. The investigation uses wavelet transformation to identify the period and the phase in these Arctic time-series. System dynamics are identified by studying the phase relationship between the dominant cycles in all time-series. A harmonic spectrum from the 18.6-year lunar nodal cycle in the Arctic time-series has been identified. The cycles in this harmonic spectrum have a stationary period, but not stationary amplitude and phase. A sub-harmonic cycle of about 74 years may introduce a phase reversal of the 18.6-year cycle. The signal-to-noise ratio between the lunar nodal spectrum and other sources changes from 1.6 to 3.2. A lunar nodal cycle in all time-series indicates that there is a forced Arctic oscillating system controlled by the pull of gravity from the moon, a system that influences long-term fluctuations in the extent of Arctic ice. The phase relation between the identified cycles indicates a possible chain of events from lunar nodal gravity cycles, to long-term tides, polar motions, Arctic ice extent, the NAO winter index, weather, and climate.


2016 ◽  
Vol 13 (24) ◽  
pp. 6651-6667 ◽  
Author(s):  
Jing Tang ◽  
Guy Schurgers ◽  
Hanna Valolahti ◽  
Patrick Faubert ◽  
Päivi Tiiva ◽  
...  

Abstract. The Arctic is warming at twice the global average speed, and the warming-induced increases in biogenic volatile organic compounds (BVOCs) emissions from Arctic plants are expected to be drastic. The current global models' estimations of minimal BVOC emissions from the Arctic are based on very few observations and have been challenged increasingly by field data. This study applied a dynamic ecosystem model, LPJ-GUESS, as a platform to investigate short-term and long-term BVOC emission responses to Arctic climate warming. Field observations in a subarctic tundra heath with long-term (13-year) warming treatments were extensively used for parameterizing and evaluating BVOC-related processes (photosynthesis, emission responses to temperature and vegetation composition). We propose an adjusted temperature (T) response curve for Arctic plants with much stronger T sensitivity than the commonly used algorithms for large-scale modelling. The simulated emission responses to 2 °C warming between the adjusted and original T response curves were evaluated against the observed warming responses (WRs) at short-term scales. Moreover, the model responses to warming by 4 and 8 °C were also investigated as a sensitivity test. The model showed reasonable agreement to the observed vegetation CO2 fluxes in the main growing season as well as day-to-day variability of isoprene and monoterpene emissions. The observed relatively high WRs were better captured by the adjusted T response curve than by the common one. During 1999–2012, the modelled annual mean isoprene and monoterpene emissions were 20 and 8 mg C m−2 yr−1, with an increase by 55 and 57 % for 2 °C summertime warming, respectively. Warming by 4 and 8 °C for the same period further elevated isoprene emission for all years, but the impacts on monoterpene emissions levelled off during the last few years. At hour-day scale, the WRs seem to be strongly impacted by canopy air T, while at the day–year scale, the WRs are a combined effect of plant functional type (PFT) dynamics and instantaneous BVOC responses to warming. The identified challenges in estimating Arctic BVOC emissions are (1) correct leaf T estimation, (2) PFT parameterization accounting for plant emission features as well as physiological responses to warming, and (3) representation of long-term vegetation changes in the past and the future.


Agronomy ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 699 ◽  
Author(s):  
Steiner ◽  
Starks ◽  
Neel ◽  
Northup ◽  
Turner ◽  
...  

The Great Plains of the USA is one of largest expanses of prairie ecosystems in the world. Prairies have been extensively converted to other land uses. The remaining prairie ecosystems are important for livestock grazing and provide benefits including habitat for avian, terrestrial, and aquatic species, carbon regulation, and hydrologic function. While producers, land management agencies, and some researchers have promoted livestock management using rotational stocking for increased production efficiency and enhanced ecosystem function, scientific literature has not provided a consensus on whether rotational stocking results in increased plant biomass or animal productivity. To address this research need, we established long-term grazing research using an adaptive management framework to encompass a wide range of production and ecological interactions on native grassland pastures. This paper describes objectives, design, and implementation of the long-term study to evaluate productivity and ecological effects of beef cow–calf management and production under continuous system (CS) or rotational system (RS) on native tallgrass prairie. Findings from 2009 to 2015 indicate that plant biomass and animal productivity were similar in the two grazing management systems. There were some indicators that forage nutritive value of standing biomass and soil nutrient content were enhanced in the RS system compared with the CS, yet individual calf body weight (BW) at weaning was greater in the CS. This prepares us to engage with producers to help determine the focus for the next phase of the research.


2019 ◽  
Vol 76 (Suppl 1) ◽  
pp. A64.3-A65
Author(s):  
Yiqun Chen ◽  
Andrew Curran

The Health and Safety Executive (HSE) is the GB regulator for health and safety at work. The HSE Health and Work (H&W) program designs and carries out a wide range of interventions; including inspection, enforcement and other regulatory activities as well as prevention; targeting priority health conditions in high-risk sectors. It is anticipated that long-term, sustainable and coordinated actions developed as part of the program will over time improve awareness, behaviors, control of exposures, and, as a result, prevent work-related ill health in GB workforce.An HSE Measuring Strategy, together with measurement framework and principles, has been developed. The measurement framework draws together data systems, covering Attitudes (A), Behaviors (B), Control of exposures (C), and Disease and work-related ill health reduction (D), based on a simple model to provide evidence required for evaluating the short, medium and long term impacts of the large scale and complex H&W program on the GB health and safety system. The Strategy gives a new focus on measuring behavioral changes and risk reductions; and emphasizes longitudinal measurement designs to assess progress over time.For developing the Strategy, workshops were organized to bring stakeholders across HSE to review existing systems for conducting population surveys, collecting exposure intelligence and occupational health surveillance, which have contributed to forming a long-term vision of fit-for-purpose measurement systems.We will present the development of the Strategy and the plans to implement it with the H&W program, which requires close collaborations between epidemiologists and social researchers, policy makers, and other multidisciplinary regulatory specialists. The lessons learnt will help HSE towards building the right evidence base for monitoring and evaluation of a range of national level intervention programs for work-related ill health prevention.©British Crown copyright (2019)


Author(s):  
Jeroen Timmermans ◽  
Ian Luff ◽  
Nicholas Long

While subsea production template and manifold designs have come to be dominated by standardized solutions tailored for specific hardware, the design of Pipeline End Manifolds (PLEM) remains largely project-specific. Nevertheless, some trends in PLEM design for large-diameter pipelines in moderate water depths have emerged in the past years in the North Sea and elsewhere; namely, large stand-alone structures on suction pile foundations with diverless spoolpiece tie-ins. This arrangement has proven successful on numerous projects; however, the move to remote arctic fields of significant production capacity and long design life introduces new design drivers that warrant a “fresh approach” to PLEM design. The developments currently being considered for the arctic will have to deal with: - Remote location making mobilization of installation assets a significant cost driver such that separate installation of pipeline and PLEM is relatively unattractive - Harsh conditions and short weather windows for installation favoring designs that reduce the number of separate installation steps and vessels - Poorer access for maintenance and repair during the operating life favoring designs that are modular and that allow recovery of critical components using the smallest possible intervention vessels. When combined with envisioned field production lives of 40 to 50 years, this means a very different set of design drivers will apply to the PLEM design. This paper presents an alternative PLEM design developed to overcome these challenges by: - Integrating of the PLEM with the pipeline to work around current industry limitations for large diameter diverless tie-in connector systems and to minimize ROV rotated sealing surfaces subsea in normal operation, - Introducing plug technology to remove the critical dependence on long-term trouble-free performance of large bore valves, - Introducing driven pile foundations to reduce structure size, prevent long-term settlements and eliminate the need for separate pipeline support frames by maintaining the pipe centerline close to the mudline, - Modularizing the system such that key components (all remaining valves) can be retrieved without complete shutdown of flow and such that installation / intervention can be performed using a wide range of vessels, and - Incorporating lessons learned from the successful design of a North Sea vertical diverless pig launcher unit. This paper presents an overview of the alternative PLEM design and discusses the status of the technologies required.


2006 ◽  
Vol 82 (1) ◽  
pp. 48-53 ◽  
Author(s):  
David Lindenmayer

The increasing prevalence and/or increasing intensity of large-scale natural disturbance events in forests means that post-disturbance salvage logging is becoming more widespread. Salvage logging can have a wide range of environmental impacts, but some of these are not well known or not well understood by policy makers and natural resource managers. Some of these impacts are briefly summarized in this paper. Improved long-term forest planning needs to be embraced that takes into account the not only the environmental but also the social and environmental impacts of salvage harvesting. Past mistakes and future opportunities associated with salvage harvesting are illustrated by a case study from the Lower Cotter Catchment in south-eastern Australia. Key words: salvage harvesting, natural disturbance, environmental impacts, ecologically sustainable forestry, forest planning, long-term forest sustainability


2021 ◽  
Vol 21 (3) ◽  
pp. 128-136
Author(s):  
Egor Yumaev ◽  

One of the main conditions for the Russian economy transition to growth rates above the global average is large-scale investment. The so-called «smart investments» are important for the accelerated economic development of Russia. Only a restricted range of states is a source of «smart investment». France is among them and it is a long-standing economic partner of Russia. French business implements long-term projects in Russia. After the economic sanctions being introduced, not a single company has left Russia; however, new investors do not come from France, and the operating investors evaluate the prospects for continuing work very carefully. As there is the economic sanctions mode, lending agencies in France, being afraid of losing their business in the United States, refuse to finance projects in Russia, even if they are not included into the sanctions list. Local manufacturing content of French companies still does not cover a wide range of areas in Russia, being limited mainly to agriculture. Compared to French, Russia’s investment contribution to France is disproportionately small. The article examines the factors determining the direct investment of France in Russia; the current investment agenda of French business in Russia; identifies the prospects for France’s investment participation in the Russian economy


2016 ◽  
Author(s):  
N. Evangeliou ◽  
Y. Balkanski ◽  
W. M. Hao ◽  
A. Petkov ◽  
R. P. Silverstein ◽  
...  

Abstract. In recent decades much attention has been given to the Arctic environment, where climate change is happening rapidly. Black carbon (BC) has been shown to be a major component of Arctic pollution that also affects the radiative balance. In the present study, we focused on how vegetation fires that occurred in Northern Eurasia during the period of 2002–2013 influenced the budget of BC in the Arctic. For simulating the transport of fire emissions from Northern Eurasia to the Arctic, we adopted BC fire emission estimates developed independently by GFED3 (Global Fire Emissions Database) and FEI-NE (Fire Emission Inventory – Northern Eurasia). Both datasets were based on fire locations and burned areas detected by MODIS (MODerate resolution Imaging Spectroradiometer) instruments on NASA's (National Aeronautics and Space Administration) Terra and Aqua satellites. Anthropogenic sources of BC were estimated using the MACCity (Monitoring Atmospheric Composition & Climate/megaCITY – Zoom for the ENvironment) emission inventory. During the 12-year period, an average area of 250,000 km2 yr−1 was burned in Northern Eurasia and the global emissions of BC ranged between 8.0 and 9.5 Tg yr−1. For the BC emitted in the Northern Hemisphere, about 70 % originated from anthropogenic sources and the rest from biomass burning (BB). Using the FEI-NE inventory, we found that 102 ± 29 kt yr−1 BC from biomass burning was deposited on the Arctic (defined here as the area north of 67º N) during the 12 years simulated, which was twice as much as when using MACCity inventory (56 ± 8 kt yr−1). The annual mass of BC deposited in the Arctic from all sources (FEI-NE in Northern Eurasia, MACCity elsewhere) is significantly higher by about 37 % in 2009 to 181 % in 2012, compared to the BC deposited using just the MACCity emission inventory. Deposition of BC in the Arctic from BB sources in the Northern Hemisphere thus represents 68 % of the BC deposited from all BC sources (the remaining being due to anthropogenic sources). Northern Eurasian vegetation fires (FEI-NE) contributed 85 % (79–91 %) to the BC deposited over the Arctic from all BB sources in the Northern Hemisphere. Arctic total BC burden showed strong seasonal variations, with highest values during the Arctic Haze season. High winter–spring values of BC burden were caused by transport of BC mainly from anthropogenic sources in Europe, whereas the peak in summer was mainly due to the fire emissions in Northern Eurasia. BC particles emitted from fires in lower latitudes (35° N–40° N) were found to remain the longest in the atmosphere due to the high release altitudes of smoke plumes, exhibit tropospheric transport resulting in a high summer peak of burden, and grow by condensation processes. In regards to the geographic contribution on the deposition of BC, we estimated that about 46 % of the BC deposited over the Arctic from vegetation fires in Northern Eurasia originated from Siberia, 6 % from Kazakhstan, 5 % from Europe, and about 1 % from Mongolia. The remaining 42 % originated from other areas in Northern Eurasia. For spring and summer, we computed that 42 % of the BC released from Northern Eurasian vegetation fires was deposited over the Arctic (annual average: 17 %). Vegetation fires in Northern Eurasia contributed to 14 % to 57 % of BC surface concentrations at the Arctic stations (Alert, Barrow, Zeppelin, Villum, and Tiksi), with fires in Siberia contributing the largest share. However, anthropogenic sources in the Northern Hemisphere remain essential, contributing 29 % to 54 % to the surface concentrations at the Arctic monitoring stations. The rest originated from North American fires.


Sign in / Sign up

Export Citation Format

Share Document