scholarly journals Characteristics of marine shipping emissions at berth: profiles for particulate matter and volatile organic compounds

2018 ◽  
Vol 18 (13) ◽  
pp. 9527-9545 ◽  
Author(s):  
Qian Xiao ◽  
Mei Li ◽  
Huan Liu ◽  
Mingliang Fu ◽  
Fanyuan Deng ◽  
...  

Abstract. Emissions from ships at berth play an important role regarding the exposure of high density human populations to atmospheric pollutants in port areas; however, these emissions are not well understood. In this study, volatile organic compounds (VOCs) and particle emissions from 20 container ships at berth were sampled and analyzed during the “fuel switch” period at Jingtang Port in Hebei Province, China. VOCs and particles were analyzed using a gas chromatography-mass spectrometer (GC-MS) and a single particle aerosol mass spectrometer (SPAMS), respectively. VOC analysis showed that alkanes and aromatics, especially benzene, toluene and heavier compounds e.g., n-heptane, n-octane and n-nonane, dominated the total identified species. Secondary organic aerosol (SOA) yields and ozone (O3) forming potential were 0.017 ± 0.007 g SOA g−1 VOCs and 2.63 ± 0.37 g O3 g−1 VOCs, respectively. Both positive and negative ion mass spectra from individual ships were derived and the intensity of specific ions were quantified. Results showed that elemental carbon (35.74 %), elemental carbon–organic carbon mixtures (33.95 %) and Na-rich particles (21.12 %) were major classes, comprising 90.7 % of the particles observed. Particles from ship auxiliary engines were in the 0.2 to 2.5 µm size range, with a peak occurring at around 0.4 µm. The issue of using vanadium (V) as tracer element was examined, and it was found that V was not a proper tracer of ship emissions when using low sulfur content diesel oil. The average percentage of sulfate particles observed in shipping emissions before and after switching to marine diesel oil remained unchanged at 24 %. Under certain wind conditions, when berths were upwind of emission sources, the ratios before and after 1 January were 35 and 27 % respectively. The impact of atmospheric stability was discussed based on PM2.5 and primary pollutant (carbon monoxide) concentration. With a background of frequent haze episodes and complex mechanisms of particulate accumulation and secondary formation, the impact of atmospheric stability is believed to have been weak on the sulfate contribution from shipping emissions. The results from this study provide robust support for port area air quality assessment and source apportionment.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Aleksander Hejna ◽  
Mariusz Marć ◽  
Jerzy Korol

Abstract This paper investigated the impact of type and content of diisocyanate on the structure of modified cellulose fillers. Four the most popular isocyanates were applied – isophorone, hexamethylene, toluene and methylene diphenyl diisocyanate – at loadings of 1–15 wt%. Chemical structure, and its short-term storage stability, were investigated for eight weeks. Moreover, the main volatile organic compounds detected during modification, as well as emitted from fillers before and after storage, were identified. The main compounds detected in the air during modifications were terpenes and terpenoids. No diisocyanates were detected, which is very beneficial considering their toxicity. They were emitted from modified fillers at 40 °C, but only from fresh samples. After storage no emissions were noted, which indicated successful modification of fillers, also confirmed by FTIR spectroscopy and changes in polarity of fillers’ surface. Observed changes should be considered beneficial for the potential applications of modified fillers in manufacturing of polymer composites.


2019 ◽  
Vol 234 (7-8) ◽  
pp. 469-482 ◽  
Author(s):  
Etienne P. Hessou ◽  
Hicham Jabraoui ◽  
M. T. Alice Kpota Hounguè ◽  
Jean-Baptiste Mensah ◽  
Mariachiara Pastore ◽  
...  

Abstract Removal of volatile organic compounds (VOCs) from indoor or outdoor environments is an urgent challenge for the protection of human populations. Inorganic sorbents such as zeolites are a promising solution to tackle this issue. Using dispersion corrected periodic DFT calculations, we have studied the interaction between sodium-exchanged faujasite zeolite and a large set of VOCs including aromatics, oxygenates and chlorinated compounds. The computed interaction energies range from about −25 (methane) to −130 kJ/mol (styrene). Methane is by far the less interacting specie with the NaY zeolite. All other VOCs present interaction energies higher in absolute value than 69 kJ/mol. Most of them show a similar adsorption strength, between −70 and −100 kJ/mol. While the electrostatic interactions are important in the case of oxygenates and acrylonitrile, van der Waals interactions predominate in hydrocarbons and chlorides. By monitoring the variation of molecular bond lengths of the different VOCs before and after adsorption, we have then evaluated the tendency of adsorbate to react and form by-products, since a significant stretching would evidently lead to the activation of the bond. While hydrocarbons, tetrachloroethylene and acrylonitrile seem to be not activated upon adsorption, all oxygenates and 1,1,2-trichloroethane could possibly react once adsorbed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. Y. Song ◽  
H. Chun

AbstractVolatile organic compounds (VOCs) are secondary pollutant precursors having adverse impacts on the environment and human health. Although VOC emissions, their sources, and impacts have been investigated, the focus has been on large-scale industrial sources or indoor environments; studies on relatively small-scale enterprises (e.g., auto-repair workshops) are lacking. Here, we performed field VOC measurements for an auto-repair painting facility in Korea and analyzed the characteristics of VOCs emitted from the main painting workshop (top coat). The total VOC concentration was 5069–8058 ppb, and 24–35 species were detected. The VOCs were mainly identified as butyl acetate, toluene, ethylbenzene, and xylene compounds. VOC characteristics differed depending on the paint type. Butyl acetate had the highest concentration in both water- and oil-based paints; however, its concentration and proportion were higher in the former (3256 ppb, 65.5%) than in the latter (2449 ppb, 31.1%). Comparing VOC concentration before and after passing through adsorption systems, concentrations of most VOCs were lower at the outlets than the inlets of the adsorption systems, but were found to be high at the outlets in some workshops. These results provide a theoretical basis for developing effective VOC control systems and managing VOC emissions from auto-repair painting workshops.


Ocean Science ◽  
2019 ◽  
Vol 15 (4) ◽  
pp. 925-940 ◽  
Author(s):  
Charel Wohl ◽  
David Capelle ◽  
Anna Jones ◽  
William T. Sturges ◽  
Philip D. Nightingale ◽  
...  

Abstract. We present a technique that utilises a segmented flow coil equilibrator coupled to a proton-transfer-reaction mass spectrometer to measure a broad range of dissolved volatile organic compounds. Thanks to its relatively large surface area for gas exchange, small internal volume, and smooth headspace–water separation, the equilibrator is highly efficient for gas exchange and has a fast response time (under 1 min). The system allows for both continuous and discrete measurements of volatile organic compounds in seawater due to its low sample water flow (100 cm3 min−1) and the ease of changing sample intake. The equilibrator setup is both relatively inexpensive and compact. Hence, it can be easily reproduced and installed on a variety of oceanic platforms, particularly where space is limited. The internal area of the equilibrator is smooth and unreactive. Thus, the segmented flow coil equilibrator is expected to be less sensitive to biofouling and easier to clean than membrane-based equilibration systems. The equilibrator described here fully equilibrates for gases that are similarly soluble or more soluble than toluene and can easily be modified to fully equilibrate for even less soluble gases. The method has been successfully deployed in the Canadian Arctic. Some example data from underway surface water and Niskin bottle measurements in the sea ice zone are presented to illustrate the efficacy of this measurement system.


2016 ◽  
Vol 9 (5) ◽  
pp. 1959-1976 ◽  
Author(s):  
Chun Zhao ◽  
Maoyi Huang ◽  
Jerome D. Fast ◽  
Larry K. Berg ◽  
Yun Qian ◽  
...  

Abstract. Current climate models still have large uncertainties in estimating biogenic trace gases, which can significantly affect atmospheric chemistry and secondary aerosol formation that ultimately influences air quality and aerosol radiative forcing. These uncertainties result from many factors, including uncertainties in land surface processes and specification of vegetation types, both of which can affect the simulated near-surface fluxes of biogenic volatile organic compounds (BVOCs). In this study, the latest version of Model of Emissions of Gases and Aerosols from Nature (MEGAN v2.1) is coupled within the land surface scheme CLM4 (Community Land Model version 4.0) in the Weather Research and Forecasting model with chemistry (WRF-Chem). In this implementation, MEGAN v2.1 shares a consistent vegetation map with CLM4 for estimating BVOC emissions. This is unlike MEGAN v2.0 in the public version of WRF-Chem that uses a stand-alone vegetation map that differs from what is used by land surface schemes. This improved modeling framework is used to investigate the impact of two land surface schemes, CLM4 and Noah, on BVOCs and examine the sensitivity of BVOCs to vegetation distributions in California. The measurements collected during the Carbonaceous Aerosol and Radiative Effects Study (CARES) and the California Nexus of Air Quality and Climate Experiment (CalNex) conducted in June of 2010 provided an opportunity to evaluate the simulated BVOCs. Sensitivity experiments show that land surface schemes do influence the simulated BVOCs, but the impact is much smaller than that of vegetation distributions. This study indicates that more effort is needed to obtain the most appropriate and accurate land cover data sets for climate and air quality models in terms of simulating BVOCs, oxidant chemistry and, consequently, secondary organic aerosol formation.


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1592
Author(s):  
Olga P. Ibragimova ◽  
Anara Omarova ◽  
Bauyrzhan Bukenov ◽  
Aray Zhakupbekova ◽  
Nassiba Baimatova

Air pollution is one of the primary sources of risk to human health in the world. In this study, seasonal and spatial variations of multiple volatile organic compounds (VOCs) were measured at six sampling sites in Almaty, Kazakhstan. The seasonal and spatial variations of 19 VOCs were evaluated in 2020, including the periods before and after COVID-19 lockdown. The concentrations of 9 out of 19 VOCs had been changed significantly (p < 0.01) during 2020. The maximum concentrations of total VOCs (TVOCs) were observed on 15, 17, and 19 January and ranged from 233 to 420 µg m−3. The spatial distribution of TVOCs concentrations in the air during sampling seasons correlated with the elevation and increased from southern to northern part of Almaty, where Combined Heat and Power Plants are located. The sources of air pollution by VOCs were studied by correlations analysis and BTEX ratios. The ranges of toluene to benzene ratio and benzene, toluene, and ethylbenzene demonstrated two primary sources of BTEX in 2020: traffic emissions and biomass/biofuel/coal burning. Most of m-, p-xylenes to ethylbenzene ratios in this study were lower than 3 in all sampling periods, evidencing the presence of aged air masses at studied sampling sites from remote sources.


2019 ◽  
Vol 12 (3) ◽  
pp. 1861-1870 ◽  
Author(s):  
Alexander Zaytsev ◽  
Martin Breitenlechner ◽  
Abigail R. Koss ◽  
Christopher Y. Lim ◽  
James C. Rowe ◽  
...  

Abstract. Chemical ionization mass spectrometry (CIMS) instruments routinely detect hundreds of oxidized organic compounds in the atmosphere. A major limitation of these instruments is the uncertainty in their sensitivity to many of the detected ions. We describe the development of a new high-resolution time-of-flight chemical ionization mass spectrometer that operates in one of two ionization modes: using either ammonium ion ligand-switching reactions such as for NH4+ CIMS or proton transfer reactions such as for proton-transfer-reaction mass spectrometer (PTR-MS). Switching between the modes can be done within 2 min. The NH4+ CIMS mode of the new instrument has sensitivities of up to 67 000 dcps ppbv−1 (duty-cycle-corrected ion counts per second per part per billion by volume) and detection limits between 1 and 60 pptv at 2σ for a 1 s integration time for numerous oxygenated volatile organic compounds. We present a mass spectrometric voltage scanning procedure based on collision-induced dissociation that allows us to determine the stability of ammonium-organic ions detected by the NH4+ CIMS instrument. Using this procedure, we can effectively constrain the sensitivity of the ammonia chemical ionization mass spectrometer to a wide range of detected oxidized volatile organic compounds for which no calibration standards exist. We demonstrate the application of this procedure by quantifying the composition of secondary organic aerosols in a series of laboratory experiments.


2018 ◽  
Vol 18 (12) ◽  
pp. 9011-9023 ◽  
Author(s):  
Zhuofei Du ◽  
Min Hu ◽  
Jianfei Peng ◽  
Wenbin Zhang ◽  
Jing Zheng ◽  
...  

Abstract. Gasoline vehicles significantly contribute to urban particulate matter (PM) pollution. Gasoline direct injection (GDI) engines, known for their higher fuel efficiency than that of port fuel injection (PFI) engines, have been increasingly employed in new gasoline vehicles. However, the impact of this trend on air quality is still poorly understood. Here, we investigated both primary emissions and secondary organic aerosol (SOA) formation from a GDI and a PFI vehicle under an urban-like driving condition, using combined approaches involving chassis dynamometer measurements and an environmental chamber simulation. The PFI vehicle emits slightly more volatile organic compounds, e.g., benzene and toluene, whereas the GDI vehicle emits more particulate components, e.g., total PM, elemental carbon, primary organic aerosols and polycyclic aromatic hydrocarbons. Strikingly, we found a much higher SOA production (by a factor of approximately 2.7) from the exhaust of the GDI vehicle than that of the PFI vehicle under the same conditions. More importantly, the higher SOA production found in the GDI vehicle exhaust occurs concurrently with lower concentrations of traditional SOA precursors, e.g., benzene and toluene, indicating a greater contribution of intermediate volatility organic compounds and semi-volatile organic compounds in the GDI vehicle exhaust to the SOA formation. Our results highlight the considerable potential contribution of GDI vehicles to urban air pollution in the future.


Sign in / Sign up

Export Citation Format

Share Document