scholarly journals Sky radiance at a coastline and effects of land and ocean reflectivities

2017 ◽  
Author(s):  
Axel Kreuter ◽  
Mario Blumthaler ◽  
Martin Tiefengraber ◽  
Richard Kift ◽  
Ann R. Webb

Abstract. We present a unique case study of the spectral sky radiance distribution above a coastline. Results are shown from a measurement campaign in Italy involving three diode array spectroradiometers which are compared to 3-D model simulations from the Monte Carlo model MYSTIC. On the coast, the surrounding is split into two regions, a diffusely reflecting land surface and a water surface which features a highly anisotropic reflectance function. The reflectivities and hence the resulting radiances are a nontrivial function of solar zenith and azimuth angle and wavelength. We show that for low solar zenith angles (SZA) around noon, the higher land albedo causes the sky radiance at 20° above the horizon to increase by 50 % in the near infrared at 850 nm for viewing directions towards the land with respect to the ocean. Comparing morning and afternoon radiances highlights the effect of the ocean’s sun glint at high SZA which contributes around 10 % to the measured radiance ratios. The model simulations generally agree with the measurements to better than 10 %. We investigate the individual effects of model input parameters representing land and ocean albedo and aerosols. Different land and ocean BRDFs do not generally improve the model agreement. However, consideration of the uncertainties in the diurnal variation of aerosol optical depth can explain the remaining discrepancies between measurements and model. We further investigate the anisotropy effect of the ocean BRDF which is featured in the zenith radiances. Again, the uncertainty of the aerosol loading is dominant and obscures the modelled sun glint effect of 7 % at 650 nm. Finally, we show that the effect on the zenith radiance is restricted to a few kilometres from the coast line by model simulations along a perpendicular transect and by comparing the radiances at the coast to those measured at a site 15 km inland. Our findings are relevant to, for example, ground based remote sensing of aerosol characteristics since a common technique is based on sky radiance measurements along the solar almucantar.

2017 ◽  
Vol 17 (23) ◽  
pp. 14353-14364
Author(s):  
Axel Kreuter ◽  
Mario Blumthaler ◽  
Martin Tiefengraber ◽  
Richard Kift ◽  
Ann R. Webb

Abstract. We present a unique case study of the spectral sky radiance distribution above a coastline. Results are shown from a measurement campaign in Italy involving three diode array spectroradiometers which are compared to 3-D model simulations from the Monte Carlo model MYSTIC. On the coast, the surrounding is split into two regions, a diffusely reflecting land surface and a water surface which features a highly anisotropic reflectance function. The reflectivities and hence the resulting radiances are a nontrivial function of solar zenith and azimuth angle and wavelength. We show that for low solar zenith angles (SZAs) around noon, the higher land albedo causes the sky radiance at 20° above the horizon to increase by 50 % in the near infrared at 850 nm for viewing directions towards the land with respect to the ocean. Comparing morning and afternoon radiances highlights the effect of the ocean's sun glint at high SZA, which contributes around 10 % to the measured radiance ratios. The model simulations generally agree with the measurements to better than 10 %. We investigate the individual effects of model input parameters representing land and ocean albedo and aerosols. Different land and ocean bi-directional reflectance functions (BRDFs) do not generally improve the model agreement. However, consideration of the uncertainties in the diurnal variation of aerosol optical depth can explain the remaining discrepancies between measurements and model. We further investigate the anisotropy effect of the ocean BRDF which is featured in the zenith radiances. Again, the uncertainty of the aerosol loading is dominant and obscures the modelled sun glint effect of 7 % at 650 nm. Finally, we show that the effect on the zenith radiance is restricted to a few kilometres from the coastline by model simulations along a perpendicular transect and by comparing the radiances at the coast to those measured at a site 15 km inland. Our findings are relevant to, for example, ground-based remote sensing of aerosol characteristics, since a common technique is based on sky radiance measurements along the solar almucantar.


1962 ◽  
Vol 45 (5) ◽  
pp. 959-977 ◽  
Author(s):  
Dan Cohen

Specific binding sites for potassium, which may be components of the carriers for active transport for K in Chlorella, were characterized by their capacity to bind rubidium. A dense suspension was allowed to take up Rb86 from a low concentration of Rb86 and a high concentration of ions which saturate non-specific sites. The amount bound was derived from the increase in the external concentration of Rb86 following addition of excess potassium. The sites were heterogeneous. The average affinity of Rb and various other ions for the sites was determined by plotting the degree of displacement of Rb86 against log molar concentration of the individual ions. Interpolation gave the concentration for 50 per cent displacement of Rb, which is inversely related to affinity. The order of affinity was not changed when the cells were frozen, or boiled either in water or in 70 per cent ethanol. The affinity is maximal for ions with a crystalline radius of 1.3 to 1.5 A and a high polarizability, and is not related to the hydrated radius or valency. It is suggested that binding groups in a site are rigidly arranged, the irregular space between them being 2.6 to 3.0 A across, so that affinity is high for ions of this diameter and high polarizability.


2003 ◽  
Vol 4 (5) ◽  
pp. 901-914 ◽  
Author(s):  
Yuqiong Liu ◽  
Luis A. Bastidas ◽  
Hoshin V. Gupta ◽  
Soroosh Sorooshian

2017 ◽  
Vol 4 (1) ◽  
pp. 229-255 ◽  
Author(s):  
Nafay CHOUDHURY

AbstractThis paper revisits the concept ofcriticallegal pluralism, which treats the individual as a site of normativity with the capacity to create legal knowledge. To help operationalize the usage of critical legal pluralism, I propose a methodological approach that places the individual’s ability to makes choices along a continuum. On one side of continuum, legal pluralism can be viewed as facilitating fully discrete choices that ascribe to one legal order or another. On the other side, the ability to make individual choices is curtailed because of the presence of a hegemonic legal order. This simple continuum helps to shed light on the complex considerations that affect individual choices, which in turn affect how various legal orders are legitimated. The paper then considers how critical legal pluralism can enrich the discussion on the legal system of Afghanistan, focusing on interviews with two Afghan justice actors: a former judge and an active defence lawyer.


2021 ◽  
Author(s):  
Miguel-Ángel Fernández-Torres ◽  
J. Emmanuel Johnson ◽  
María Piles ◽  
Gustau Camps-Valls

<p>Automatic anticipation and detection of extreme events constitute a major challenge in the current context of climate change. Machine learning approaches have excelled in detection of extremes and anomalies in Earth data cubes recently, but are typically both computationally costly and supervised, which hamper their wide adoption. We alternatively present here an unsupervised, efficient, generative approach for extreme event detection, whose performance is illustrated for drought detection in Europe during the severe Russian heat wave in 2010. The core architecture of the model is generic and could naturally be extended to the detection of other kinds of anomalies. First, it computes hierarchical appearance (spatial) and motion (temporal) representations of several informative Essential Climate Variables (ECVs), including soil moisture, land surface temperature, as well as features describing vegetation health. Then, these representations are combined using Gaussianization Flows that yield a spatio-temporal anomaly score. This allows the proposed model not only to detect droughts areas, but also to explain why they were produced, monitoring the individual contributions of each of the ECVs to the indicator at its output.</p>


2016 ◽  
Author(s):  
Tero Mielonen ◽  
Anca Hienola ◽  
Thomas Kühn ◽  
Joonas Merikanto ◽  
Antti Lipponen ◽  
...  

Abstract. Previous studies have indicated that summer-time aerosol optical depths (AOD) over the southeastern US are dependent on temperature but the reason for this dependence and its radiative effects have so far been unclear. To quantify these effects we utilized AOD and land surface temperature (LST) products from the Advanced Along-Track Scanning Radiometer (AATSR) with observations of tropospheric nitrogen dioxide (NO2) column densities from the Ozone Monitoring Instrument (OMI). Furthermore, simulations of the global aerosol-climate model ECHAM-HAMMOZ have been used to identify the possible processes affecting aerosol loads and their dependence on temperature over the studied region. Our results showed that the level of AOD in the southeastern US is mainly governed by anthropogenic emissions but the observed temperature dependent behaviour is most likely originating from non-anthropogenic emissions. Model simulations indicated that biogenic emissions of volatile organic compounds (BVOC) can explain the observed temperature dependence of AOD. According to the remote sensing data sets, the non-anthropogenic contribution increases AOD by approximately 0.009 ± 0.018 K−1 while the modelled BVOC emissions increase AOD by 0.022 ± 0.002 K−1. Consequently, the regional direct radiative effect (DRE) of the non-anthropogenic AOD is −0.43 ± 0.88 W/m2/K and −0.17 ± 0.35 W/m2/K for clear- and all-sky conditions, respectively. The model estimate of the regional clear-sky DRE for biogenic aerosols is also in the same range: −0.86 ± 0.06 W/m2/K. These DRE values indicate significantly larger cooling than the values reported for other forested regions. Furthermore, the model simulations showed that biogenic emissions increased the number of biogenic aerosols with radius larger than 100 nm (N100, proxy for cloud condensation nuclei) by 28 % per one degree temperature increase. For the total N100, the corresponding increase was 4 % which implies that biogenic emissions could also have a small effect on indirect radiative forcing in this region.


2018 ◽  
Vol 22 (12) ◽  
pp. 6241-6255 ◽  
Author(s):  
Soumendra N. Bhanja ◽  
Xiaokun Zhang ◽  
Junye Wang

Abstract. Groundwater is one of the most important natural resources for economic development and environmental sustainability. In this study, we estimated groundwater storage in 11 major river basins across Alberta, Canada, using a combination of remote sensing (Gravity Recovery and Climate Experiment, GRACE), in situ surface water data, and land surface modeling estimates (GWSAsat). We applied separate calculations for unconfined and confined aquifers, for the first time, to represent their hydrogeological differences. Storage coefficients for the individual wells were incorporated to compute the monthly in situ groundwater storage (GWSAobs). The GWSAsat values from the two satellite-based products were compared with GWSAobs estimates. The estimates of GWSAsat were in good agreement with the GWSAobs in terms of pattern and magnitude (e.g., RMSE ranged from 2 to 14 cm). While comparing GWSAsat with GWSAobs, most of the statistical analyses provide mixed responses; however the Hodrick–Prescott trend analysis clearly showed a better performance of the GRACE-mascon estimate. The results showed trends of GWSAobs depletion in 5 of the 11 basins. Our results indicate that precipitation played an important role in influencing the GWSAobs variation in 4 of the 11 basins studied. A combination of rainfall and snowmelt positively influences the GWSAobs in six basins. Water budget analysis showed an availability of comparatively lower terrestrial water in 9 of the 11 basins in the study period. Historical groundwater recharge estimates indicate a reduction of groundwater recharge in eight basins during 1960–2009. The output of this study could be used to develop sustainable water withdrawal strategies in Alberta, Canada.


2006 ◽  
Vol 6 (7) ◽  
pp. 1953-1976 ◽  
Author(s):  
B. Dils ◽  
M. De Mazière ◽  
J. F. Müller ◽  
T. Blumenstock ◽  
M. Buchwitz ◽  
...  

Abstract. Total column amounts of CO, CH4, CO2 and N2O retrieved from SCIAMACHY nadir observations in its near-infrared channels have been compared to data from a ground-based quasi-global network of Fourier-transform infrared (FTIR) spectrometers. The SCIAMACHY data considered here have been produced by three different retrieval algorithms, WFM-DOAS (version 0.5 for CO and CH4 and version 0.4 for CO2 and N2O), IMAP-DOAS (version 1.1 and 0.9 (for CO)) and IMLM (version 6.3) and cover the January to December 2003 time period. Comparisons have been made for individual data, as well as for monthly averages. To maximize the number of reliable coincidences that satisfy the temporal and spatial collocation criteria, the SCIAMACHY data have been compared with a temporal 3rd order polynomial interpolation of the ground-based data. Particular attention has been given to the question whether SCIAMACHY observes correctly the seasonal and latitudinal variability of the target species. The present results indicate that the individual SCIAMACHY data obtained with the actual versions of the algorithms have been significantly improved, but that the quality requirements, for estimating emissions on regional scales, are not yet met. Nevertheless, possible directions for further algorithm upgrades have been identified which should result in more reliable data products in a near future.


Sign in / Sign up

Export Citation Format

Share Document