scholarly journals Sensitivities of the MJO Forecasts on Configurations of Physics in the ECMWF Global Model

2020 ◽  
Author(s):  
Jun-Ichi Yano ◽  
Nils P. Wedi

Abstract. Sensitivities of MJO forecasts to various different configurations of physics are examined with the ECMWF global model, IFS. A motivation behind this study is to explore a possibility of interpreting the MJO as a nonlinear free wave under active interactions with Rossby waves from and to higher latitudes. With this motivation in mind, various momentum dissipation terms as well as diabatic heating are selectively turned off over the tropics for the range of the latitudes 20° S–20° N, and it is examined how physical tendencies control the MJO dynamics. The former include eddy diffusivities as well as dissipations by both shallow and deep convection. The reduction of momentum dissipations tends to improve the MJO forecasts, but the effects are hardly additive, and their total removals rather lead to a rapid decay of the MJO, illustrating the complexity of interactions between the physics.

2021 ◽  
Author(s):  
Shuheng Lin ◽  
Song Yang ◽  
Shan He ◽  
Zhenning Li ◽  
Jiaxin Chen ◽  
...  

AbstractAtmospheric diabatic heating, a major driving force of atmospheric circulation over the tropics, is strongly confined to the tropical western North Pacific (TWNP) region, with the global warmest sea surface temperature (SST). The changes in diabatic heating over the TWNP, which exert great impacts on the global climate system, have recently exhibited a noticeable seasonal dependence with a remarkable increase in boreal spring. In this study, we applied observations, reanalysis data, and numerical experiments to investigate the causes of the seasonality in heating changes. Results show that in boreal spring convection is more sensitive to the TWNP SST, leading to a more significant enhancement of deep convection, although the increase in the SST is nearly the same as that in the other seasons. In the non-spring seasons, the enhanced convection due to increased local SST is suppressed by the anomalous anticyclonic wind shear over the TWNP, generated by the easterly wind anomalies induced by the tropical Indian Ocean (TIO) warming via the Kevin waves. However, the TIO warming does not show any suppressing effect in spring because it is much weaker than that in the other seasons and thus the warming itself cannot induce sufficient convective heating anomalies to excite the Kelvin waves.


2009 ◽  
Vol 137 (4) ◽  
pp. 1338-1357 ◽  
Author(s):  
Larry J. Hopper ◽  
Courtney Schumacher

Abstract Divergence structures associated with the spectrum of precipitating systems in the subtropics and midlatitudes are not well documented. A mesoscale model is used to quantify the relative importance different baroclinic environments have on divergence profiles for storms primarily caused by upper-level disturbances in southeastern Texas, a subtropical region. The divergence profiles simulated for a subset of the modeled storms are consistent with those calculated from an S-band Doppler radar. Realistic convective and stratiform divergence signals are also generated when applying a two-dimensional convective–stratiform separation algorithm to reflectivities derived from the mesoscale model, although the model appears to underestimate stratiform rain area. Divergence profiles from the modeled precipitating systems vary in magnitude and structure across the wide range of baroclinicities common in southeastern Texas. Barotropic storms more characteristic of the tropics generate the most elevated divergence (and thus diabatic heating) structures with the largest magnitudes. In addition, stratiform rain regions in barotropic storms contain thicker, more elevated midlevel convergence signatures than more baroclinic storms. As the degree of baroclinicity increases, stratiform area fractions generally increase while the levels of nondivergence (LNDs) decrease. However, some weakly baroclinic storms contain stratiform area fractions and/or divergence profiles with magnitudes and LNDs that are similar to barotropic storms, despite having lower tropopause heights and less deep convection. Additional convection forms after the passage of barotropic and weakly baroclinic storms that contain elevated divergence signatures, circumstantially suggesting that heating at upper levels may cause diabatic feedbacks that help to drive regions of persistent convection in the subtropics.


2013 ◽  
Vol 141 (4) ◽  
pp. 1347-1357 ◽  
Author(s):  
Lawrence C. Gloeckler ◽  
Paul E. Roundy

Abstract Time indices of the Madden–Julian oscillation (MJO) are often used to generate empirical forecasts of the global atmospheric circulation. Moist deep convection associated with the MJO initiates eastward-propagating Rossby waves that disperse into the midlatitudes. The background circulation then guides extratropical waves back into the tropics of the eastern Pacific Ocean. Previous works have shown that equatorial Rossby (ER) waves occur following intrusion of extratropical Rossby waves into the tropics. Westward-propagating ER waves and the MJO modulate the total convection. This convection modulates the zonal wind, which influences the location and existence of westerly wind ducts. These wind ducts, in turn, guide extratropical waves into the tropics. This paper demonstrates through a simple composite analysis that a simultaneous assessment of MJO and ER waves yields more information about the extratropical circulation during boreal winter than can be obtained based on either type of disturbance alone, or from a sum of the signals associated with the MJO and ER waves composited separately. This analysis, together with previous results, suggests a feedback loop between the MJO, these waves, and the extratropical circulation. Thus, assessment of the ER wave state during a particular phase of the MJO might yield better empirical prediction of the global atmospheric circulation that follows.


2020 ◽  
Vol 148 (12) ◽  
pp. 4747-4765
Author(s):  
Nicholas J. Weber ◽  
Clifford F. Mass ◽  
Daehyun Kim

AbstractMonthlong simulations targeting four Madden–Julian oscillation events made with several global model configurations are verified against observations to assess the roles of grid spacing and convective parameterization on the representation of tropical convection and midlatitude forecast skill. Specifically, the performance of a global convection-permitting model (CPM) configuration with a uniform 3-km mesh is compared to that of a global 15-km mesh with and without convective parameterization, and of a variable-resolution “channel” simulation using 3-km grid spacing only in the tropics with a scale-aware convection scheme. It is shown that global 3-km simulations produce realistic tropical precipitation statistics, except for an overall wet bias and delayed diurnal cycle. The channel simulation performs similarly, although with an unrealistically higher frequency of heavy rain. The 15-km simulations with and without cumulus schemes produce too much light and heavy tropical precipitation, respectively. Without convection parameterization, the 15-km global model produces unrealistically abundant, short-lived, and intense convection throughout the tropics. Only the global CPM configuration is able to capture eastward-propagating Madden–Julian oscillation events, and the 15-km runs favor stationary or westward-propagating convection organized at the planetary scale. The global 3-km CPM exhibits the highest extratropical forecast skill aloft and at the surface, particularly during week 3 of each hindcast. Although more cases are needed to confirm these results, this study highlights many potential benefits of using global CPMs for subseasonal forecasting. Furthermore, results show that alternatives to global convection-permitting resolution—using coarser or spatially variable resolution—feature compromises that may reduce their predictive performance.


2019 ◽  
Author(s):  
Pierre Gentine ◽  
Adam Massmann ◽  
Benjamin R. Lintner ◽  
Sayed Hamed Alemohammad ◽  
Rong Fu ◽  
...  

Abstract. The continental tropics play a leading role in the terrestrial water and carbon cycles. Land–atmosphere interactions are integral in the regulation of surface energy, water and carbon fluxes across multiple spatial and temporal scales over tropical continents. We review here some of the important characteristics of tropical continental climates and how land–atmosphere interactions regulate them. Along with a wide range of climates, the tropics manifest a diverse array of land–atmosphere interactions. Broadly speaking, in tropical rainforests, light and energy are typically more limiting than precipitation and water supply for photosynthesis and evapotranspiration; whereas in savanna and semi-arid regions water is the critical regulator of surface fluxes and land–atmosphere interactions. We discuss the impact of the land surface, how it affects shallow clouds and how these clouds can feedback to the surface by modulating surface radiation. Some results from recent research suggest that shallow clouds may be especially critical to land–atmosphere interactions as these regulate the energy budget and moisture transport to the lower troposphere, which in turn affects deep convection. On the other hand, the impact of land surface conditions on deep convection appear to occur over larger, non-local, scales and might be critically affected by transitional regions between the climatologically dry and wet tropics.


2021 ◽  
Vol 21 (6) ◽  
pp. 4759-4778
Author(s):  
Jun-Ichi Yano ◽  
Nils P. Wedi

Abstract. The sensitivities of the Madden–Julian oscillation (MJO) forecasts to various different configurations of the parameterized physics are examined with the global model of ECMWF's Integrated Forecasting System (IFS). The motivation for the study was to simulate the MJO as a nonlinear free wave under active interactions with higher-latitude Rossby waves. To emulate free dynamics in the IFS, various momentum-dissipation terms (“friction”) as well as diabatic heating were selectively turned off over the tropics for the range of the latitudes from 20∘ S to 20∘ N. The reduction of friction sometimes improves the MJO forecasts, although without any systematic tendency. Contrary to the original motivation, emulating free dynamics with an operational forecast model turned out to be rather difficult, because forecast performance sensitively depends on the specific type of friction turned off. The result suggests the need for theoretical investigations that much more closely follow the actual formulations of model physics: a naive approach with a dichotomy of with or without friction simply fails to elucidate the rich behaviour of complex operational models. The paper further exposes the importance of physical processes other than convection for simulating the MJO in global forecast models.


2005 ◽  
Vol 62 (5) ◽  
pp. 1480-1496 ◽  
Author(s):  
Zachary A. Eitzen ◽  
David A. Randall

Abstract This study uses a numerical model to simulate deep convection both in the Tropics over the ocean and the midlatitudes over land. The vertical grid that was used extends into the stratosphere, allowing for the simultaneous examination of the convection and the vertically propagating gravity waves that it generates. A large number of trajectories are used to evaluate the behavior of tracers in the troposphere, and it is found that the tracers can be segregated into different types based upon their position in a diagram of normalized vertical velocity versus displacement. Conditional sampling is also used to identify updrafts in the troposphere and calculate their contribution to the kinetic energy budget of the troposphere. In addition, Fourier analysis is used to characterize the waves in the stratosphere; it was found that the waves simulated in this study have similarities to those observed and simulated by other researchers. Finally, this study examines the wave energy flux as a means to provide a link between the tropospheric behavior of the convection and the strength of the waves in the stratosphere.


2016 ◽  
Vol 97 (5) ◽  
pp. 787-801 ◽  
Author(s):  
Bjorn Stevens ◽  
David Farrell ◽  
Lutz Hirsch ◽  
Friedhelm Jansen ◽  
Louise Nuijens ◽  
...  

Abstract Clouds over the ocean, particularly throughout the tropics, are poorly understood and drive much of the uncertainty in model-based projections of climate change. In early 2010, the Max Planck Institute for Meteorology and the Caribbean Institute for Meteorology and Hydrology established the Barbados Cloud Observatory (BCO) on the windward edge of Barbados. At 13°N the BCO samples the seasonal migration of the intertropical convergence zone (ITCZ), from the well-developed winter trades dominated by shallow cumulus to the transition to deep convection as the ITCZ migrates northward during boreal summer. The BCO is also well situated to observe the remote meteorological impact of Saharan dust and biomass burning. In its first six years of operation, and through complementary intensive observing periods using the German High Altitude and Long Range Research Aircraft (HALO), the BCO has become a cornerstone of efforts to understand the relationship between cloudiness, circulation, and climate change.


2009 ◽  
Vol 9 (15) ◽  
pp. 5847-5864 ◽  
Author(s):  
J. S. Wright ◽  
R. Fu ◽  
A. J. Heymsfield

Abstract. The factors that control the influence of deep convective detrainment on water vapor in the tropical upper troposphere are examined using observations from multiple satellites in conjunction with a trajectory model. Deep convection is confirmed to act primarily as a moisture source to the upper troposphere, modulated by the ambient relative humidity (RH). Convective detrainment provides strong moistening at low RH and offsets drying due to subsidence across a wide range of RH. Strong day-to-day moistening and drying takes place most frequently in relatively dry transition zones, where between 0.01% and 0.1% of Tropical Rainfall Measuring Mission Precipitation Radar observations indicate active convection. Many of these strong moistening events in the tropics can be directly attributed to detrainment from recent tropical convection, while others in the subtropics appear to be related to stratosphere-troposphere exchange. The temporal and spatial limits of the convective source are estimated to be about 36–48 h and 600–1500 km, respectively, consistent with the lifetimes of detrainment cirrus clouds. Larger amounts of detrained ice are associated with enhanced upper tropospheric moistening in both absolute and relative terms. In particular, an increase in ice water content of approximately 400% corresponds to a 10–90% increase in the likelihood of moistening and a 30–50% increase in the magnitude of moistening.


2021 ◽  
Author(s):  
Rishav Goyal ◽  
Martin Jucker ◽  
Alex Sen Gupta ◽  
Harry Hendon ◽  
Matthew England

Abstract A distinctive feature of the Southern Hemisphere (SH) extratropical atmospheric circulation is the quasi-stationary zonal wave 3 (ZW3) pattern, characterized by three high and three low-pressure centers around the SH extratropics. This feature is present in both the mean atmospheric circulation and its variability on daily, seasonal and interannual timescales. While the ZW3 pattern has significant impacts on meridional heat transport and Antarctic sea ice extent, the reason for its existence remains uncertain, although it has long been assumed to be linked to the existence of three major land masses in the SH extratropics. Here we use an atmospheric general circulation model to show that the stationery ZW3 pattern is instead driven by zonal asymmetric deep atmospheric convection in the tropics, with little to no role played by the orography or land masses in the extratropics. Localized regions of deep convection in the tropics form a local Hadley cell which in turn creates a wave source in the subtropics that excites a poleward and eastward propagating wave train which forms stationary waves in the SH high latitudes. Our findings suggest that changes in tropical deep convection, either due to natural variability or climate change, will impact the zonal wave 3 pattern, with implications for Southern Hemisphere climate, ocean circulation, and sea-ice.


Sign in / Sign up

Export Citation Format

Share Document