scholarly journals Characterisation and surface radiative impact of Arctic low clouds from the IAOOS field experiment

2020 ◽  
Author(s):  
Julia Maillard ◽  
François Ravetta ◽  
Jean-Christophe Raut ◽  
Vincent Mariage ◽  
Jacques Pelon

Abstract. The Ice, Atmosphere, Arctic Ocean Observing System (IAOOS) field experiment took place from 2014 to 2019. Over this period, more than 20 instrumented buoys were deployed at the North Pole. Once locked into the ice, the buoys drifted for periods of a month to more than a year. Some of these buoys were equipped with 808 nm wavelength lidars which acquired a total of 1805 profiles over the course of the campaign. This IAOOS lidar dataset is exploited to establish a novel statistic of cloud cover and of the geometrical and optical characteristics of the lowest cloud layer. Cloud frequency is globally at 75 %, and above 85 % from May to October. Single layers are thickest in October/November and thinnest in the summer. Meanwhile, their optical depth is maximum in October. On the whole, the cloud cover is very low, with the great majority of first layer bases beneath 120 m. In the shoulder seasons, surface temperatures are markedly warmer when the IAOOS profile contains at least one low cloud than when it does not. This temperature difference is statistically insignificant in the summer months. Indeed, summer clouds have a shortwave cooling effect which can reach −60 W m−2 and balance out their longwave warming effect.

2021 ◽  
Vol 21 (5) ◽  
pp. 4079-4101
Author(s):  
Julia Maillard ◽  
François Ravetta ◽  
Jean-Christophe Raut ◽  
Vincent Mariage ◽  
Jacques Pelon

Abstract. The Ice, Atmosphere, Arctic Ocean Observing System (IAOOS) field experiment took place from 2014 to 2019. Over this period, more than 20 instrumented buoys were deployed at the North Pole. Once locked into the ice, the buoys drifted for periods of a month to more than a year. Some of these buoys were equipped with 808 nm wavelength lidars which acquired a total of 1777 profiles over the course of the campaign. This IAOOS lidar dataset is exploited to establish a novel statistic of cloud cover and of the geometrical and optical characteristics of the lowest cloud layer. The average cloud frequency from April to December over the course of the campaign was 75 %. Cloud occurrence frequencies were above 85 % from May to October. Single layers are thickest in October/November and thinnest in the summer. Meanwhile, their optical depth is maximum in October. On the whole, the cloud base height is very low, with the great majority of first layer bases beneath 120 m. In April and October, surface temperatures are markedly warmer when the IAOOS profile contains at least one low cloud than when it does not. This temperature difference is statistically insignificant in the summer months. Indeed, summer clouds have a shortwave cooling effect which can reach −60 W m−2 and balance out their longwave warming effect.


2018 ◽  
Vol 31 (19) ◽  
pp. 7925-7947 ◽  
Author(s):  
Mark D. Zelinka ◽  
Kevin M. Grise ◽  
Stephen A. Klein ◽  
Chen Zhou ◽  
Anthony M. DeAngelis ◽  
...  

The long-standing expectation that poleward shifts of the midlatitude jet under global warming will lead to poleward shifts of clouds and a positive radiative feedback on the climate system has been shown to be misguided by several recent studies. On interannual time scales, free-tropospheric clouds are observed to shift along with the jet, but low clouds increase across a broad expanse of the North Pacific Ocean basin, resulting in negligible changes in total cloud fraction and top-of-atmosphere radiation. Here it is shown that this low-cloud response is consistent across eight independent satellite-derived cloud products. Using multiple linear regression, it is demonstrated that the spatial pattern and magnitude of the low-cloud-coverage response is primarily driven by anomalous surface temperature advection. In the eastern North Pacific, anomalous cold advection by anomalous northerly surface winds enhances sensible and latent heat fluxes from the ocean into the boundary layer, resulting in large increases in low-cloud coverage. Local increases in low-level stability make a smaller contribution to this low-cloud increase. Despite closely capturing the observed response of large-scale meteorology to jet shifts, global climate models largely fail to capture the observed response of clouds and radiation to interannual jet shifts because they systematically underestimate how sensitive low clouds are to surface temperature advection, and to a lesser extent, low-level stability. More realistic model simulations of cloud–radiation–jet interactions require that parameterizations more accurately capture the sensitivity of low clouds to surface temperature advection.


2006 ◽  
Vol 19 (24) ◽  
pp. 6425-6432 ◽  
Author(s):  
Robert Wood ◽  
Christopher S. Bretherton

Abstract Observations in subtropical regions show that stratiform low cloud cover is well correlated with the lower-troposphere stability (LTS), defined as the difference in potential temperature θ between the 700-hPa level and the surface. The LTS can be regarded as a measure of the strength of the inversion that caps the planetary boundary layer (PBL). A stronger inversion is more effective at trapping moisture within the marine boundary layer (MBL), permitting greater cloud cover. This paper presents a new formulation, called the estimated inversion strength (EIS), to estimate the strength of the PBL inversion given the temperatures at 700 hPa and at the surface. The EIS accounts for the general observation that the free-tropospheric temperature profile is often close to a moist adiabat and its lapse rate is strongly temperature dependent. Therefore, for a given LTS, the EIS is greater at colder temperatures. It is demonstrated that while the seasonal cycles of LTS and low cloud cover fraction (CF) are strongly correlated in many regions, no single relationship between LTS and CF can be found that encompasses the wide range of temperatures occurring in the Tropics, subtropics, and midlatitudes. However, a single linear relationship between CF and EIS explains 83% of the regional/seasonal variance in stratus cloud amount, suggesting that EIS is a more regime-independent predictor of stratus cloud amount than is LTS under a wide range of climatological conditions. The result has some potentially important implications for how low clouds might behave in a changed climate. In contrast to Miller’s thermostat hypothesis that a reduction in the lapse rate (Clausius–Clapeyron) will lead to increased LTS and increased tropical low cloud cover in a warmer climate, the results here suggest that low clouds may be much less sensitive to changes in the temperature profile if the vertical profile of tropospheric warming follows a moist adiabat.


2018 ◽  
Vol 31 (23) ◽  
pp. 9585-9603 ◽  
Author(s):  
A. Dommo ◽  
N. Philippon ◽  
Derbetini A. Vondou ◽  
G. Sèze ◽  
R. Eastman

Western central Africa (WCA) was recently shown to be one of the cloudiest areas of the tropics. Analyzing an ensemble of satellite products and surface cloud observations, we show that in June–September, WCA cloud cover is dominated by single-layered low stratiform clouds. Despite an underestimation of low cloud frequency in satellite estimates at night, comparisons with surface observations bring insights into the spatial distribution and diurnal cycle of low clouds. Both appear strongly influenced by orography: to the west, the coastal plains and the ocean-facing valleys have the largest cloud cover and a lower-amplitude diurnal cycle with a maximum cloud phase at 0400 local time (LT). To the east, across the windward slopes, plateaus, and downwind slopes, the cloud cover becomes progressively reduced and the diurnal cycle has a larger amplitude with a maximum cloud phase at 1000 LT. In terms of atmospheric dynamics, the east/west gradient observed in low cloud frequency and amount is related to a foehn effect without substantial rainfall on windward slopes. The diurnal cycle of low clouds on the windward slopes and plateaus is related to the reversal, from mean subsidence at 0700 LT over the Atlantic and inland to rising motion inland at 1300 LT. In addition, the airmass stability in low levels prevents the vertical development of cloud cover. Last, we could not detect in the European reanalyses any nocturnal jet as observed in southern West Africa (SWA), suggesting different mechanisms triggering low cloud formation in WCA compare to SWA.


1993 ◽  
Vol 67 (S35) ◽  
pp. 1-35 ◽  
Author(s):  
Louie Marincovich

The marine molluscan fauna of the Prince Creek Formation near Ocean Point, northern Alaska, is of Danian age. It is the only diverse and abundant Danian molluscan fauna known from the Arctic Ocean realm, and is the first evidence for an indigenous Paleocene shallow-water biota within a discrete Arctic Ocean Basin faunal province.A high percentage of endemic species, and two endemic genera, emphasize the degree to which the Arctic Ocean was geographically isolated from the world ocean during the earliest Tertiary. Many of the well-preserved Ocean Point mollusks, however, also occur in Danian faunas of the North American Western Interior, the Canadian Arctic Islands, Svalbard, and northwestern Europe, and are the basis for relating this Arctic Ocean fauna to that of the Danian world ocean.The Arctic Ocean was a Danian refugium for some genera that became extinct elsewhere during the Jurassic and Cretaceous. At the same time, this nearly landlocked ocean fostered the evolution of new taxa that later in the Paleogene migrated into the world ocean by way of the northeastern Atlantic. The first Cenozoic occurrences are reported for the bivalves Integricardium (Integricardium), Oxytoma (Hypoxytoma), Placunopsis, Tancredia (Tancredia), and Tellinimera, and the oldest Cenozoic records given for the bivalves Gari (Garum), Neilo, and Yoldia (Cnesterium). Among the 25 species in the molluscan fauna are four new gastropod species, Amauropsis fetteri, Ellipsoscapha sohli, Mathilda (Fimbriatella) amundseni, and Polinices (Euspira) repenningi, two new bivalve genera, Arcticlam and Mytilon, and 15 new bivalve species, Arcticlam nanseni, Corbula (Caryocorbula) betsyae, Crenella kannoi, Cyrtodaria katieae, Gari (Garum) brouwersae, Integricardium (Integricardium) keenae, Mytilon theresae, Neilo gryci, Nucula (Nucula) micheleae, Nuculana (Jupiteria) moriyai, Oxytoma (Hypoxytoma) hargrovei, Placunopsis rothi, Tancredia (Tancredia) slavichi, Tellinimera kauffmani, and Yoldia (Cnesterium) gladenkovi.


2014 ◽  
Vol 14 (13) ◽  
pp. 6695-6716 ◽  
Author(s):  
A. Muhlbauer ◽  
I. L. McCoy ◽  
R. Wood

Abstract. An artificial neural network cloud classification scheme is combined with A-train observations to characterize the physical properties and radiative effects of marine low clouds based on their morphology and type of mesoscale cellular convection (MCC) on a global scale. The cloud morphological categories are (i) organized closed MCC, (ii) organized open MCC and (iii) cellular but disorganized MCC. Global distributions of the frequency of occurrence of MCC types show clear regional signatures. Organized closed and open MCCs are most frequently found in subtropical regions and in midlatitude storm tracks of both hemispheres. Cellular but disorganized MCC are the predominant type of marine low clouds in regions with warmer sea surface temperature such as in the tropics and trade wind zones. All MCC types exhibit a pronounced seasonal cycle. The physical properties of MCCs such as cloud fraction, radar reflectivity, drizzle rates and cloud top heights as well as the radiative effects of MCCs are found highly variable and a function of the type of MCC. On a global scale, the cloud fraction is largest for closed MCC with mean cloud fractions of about 90%, whereas cloud fractions of open and cellular but disorganized MCC are only about 51% and 40%, respectively. Probability density functions (PDFs) of cloud fractions are heavily skewed and exhibit modest regional variability. PDFs of column maximum radar reflectivities and inferred cloud base drizzle rates indicate fundamental differences in the cloud and precipitation characteristics of different MCC types. Similarly, the radiative effects of MCCs differ substantially from each other in terms of shortwave reflectance and transmissivity. These differences highlight the importance of low-cloud morphologies and their associated cloudiness on the shortwave cloud forcing.


2021 ◽  
Vol 21 (5) ◽  
pp. 4149-4167
Author(s):  
Joseph Sedlar ◽  
Adele Igel ◽  
Hagen Telg

Abstract. Clear-sky periods across the high latitudes have profound impacts on the surface energy budget and lower atmospheric stratification; however an understanding of the atmospheric processes leading to low-level cloud dissipation and formation events is limited. A method to identify clear periods at Utqiaġvik (formerly Barrow), Alaska, during a 5-year period (2014–2018) is developed. A suite of remote sensing and in situ measurements from the high-latitude observatory are analyzed; we focus on comparing and contrasting atmospheric properties during low-level (below 2 km) cloud dissipation and formation events to understand the processes controlling clear-sky periods. Vertical profiles of lidar backscatter suggest that aerosol presence across the lower atmosphere is relatively invariant during the periods bookending clear conditions, which suggests that a sparsity of aerosol is not frequently a cause for cloud dissipation on the North Slope of Alaska. Further, meteorological analysis indicates two active processes ongoing that appear to support the formation of low clouds after a clear-sky period: namely, horizontal advection, which was dominant in winter and early spring, and quiescent air mass modification, which was dominant in the summer. During summer, the dominant mode of cloud formation is a low cloud or fog layer developing near the surface. This low cloud formation is driven largely by air mass modification under relatively quiescent synoptic conditions. Near-surface aerosol particles concentrations changed by a factor of 2 around summer formation events. Thermodynamic adjustment and increased aerosol presence under quiescent atmospheric conditions are hypothesized as important mechanisms for fog formation.


2009 ◽  
Vol 6 (1) ◽  
pp. 971-994 ◽  
Author(s):  
E. H. Shadwick ◽  
T. Papakyriakou ◽  
A. E. F. Prowe ◽  
D. Leong ◽  
S. A. Moore ◽  
...  

Abstract. The Arctic Ocean is expected to be disproportionately sensitive to climatic changes, and is thought to be an area where such changes might be detected. The Arctic hydrological cycle is influenced by: runoff and precipitation, sea ice formation/melting, and the inflow of saline waters from Bering and Fram Straits and the Barents Sea Shelf. Pacific water is recognizable as intermediate salinity water, with high concentrations of dissolved inorganic carbon (DIC), flowing from the Arctic Ocean to the North Atlantic via the Canadian Arctic Archipelago. We present DIC data from an east-west section through the Archipelago, as part of the Canadian International Polar Year initiatives. The fractions of Pacific and Arctic Ocean waters leaving the Archipelago and entering Baffin Bay, and subsequently the North Atlantic, are computed. The eastward transport of carbon from the Pacific, via the Arctic, to the North Atlantic is estimated. Altered mixing ratios of Pacific and freshwater in the Arctic Ocean have been recorded in recent decades. Any climatically driven alterations in the composition of waters leaving the Arctic Archipelago may have implications for anthropogenic CO2 uptake, and hence ocean acidification, in the subpolar and temperate North Atlantic.


2017 ◽  
Vol 11 (1) ◽  
pp. 54-70 ◽  
Author(s):  
Najib Yusuf ◽  
Daniel Okoh ◽  
Ibrahim Musa ◽  
Samson Adedoja ◽  
Rabia Said

Background: Simultaneous measurements of air temperature were carried out using automatic weather stations at 14 tropical locations in Nigeria. Diurnal variations were derived from the 5-minute update cycle initial data for the years ranging between 2007 and 2013. The temperature trends in Nigeria revealed a continuous variability that is seasonally dependent within any particular year considered. Method: The analysis was carried out using available data from the network and the results are presented with a focus to characterize the temperature variations at different locations in the country using the mean, maximum and minimum temperatures from the north which is arid in nature to the south, which is a tropical monsoon climate type and a coastal region. Result: In overall, temperature variations in Nigeria were observed to have higher values in the far north, attributed to the influence of Sahara Desert, which has less cloud cover and therefore is more transparent to solar irradiance and lowers values in the south, where there are more cloud cover and abundant vegetation. Conclusion: Measured maximum and minimum temperatures in Nigeria are respectively 43.1°C at Yola (north-east part of Nigeria) and 10.2°C for Jos (north-central part of Nigeria). The least temperature variations were recorded for stations in the southern part of the country, while the largest variations were recorded in the north-central region of the country.


Sign in / Sign up

Export Citation Format

Share Document