scholarly journals Characterization of transport from the Asian summer monsoon anticyclone into the UTLS via shedding of low-potential vorticity cutoffs

2021 ◽  
Author(s):  
Jan Clemens ◽  
Felix Ploeger ◽  
Paul Konopka ◽  
Raphael Portmann ◽  
Michael Sprenger ◽  
...  

Abstract. Air mass transport within the summertime Asian monsoon circulation provides a major source of anthropogenic pollution for the upper troposphere and lower stratosphere (UTLS). Here, we investigate the quasi-horizontal transport of air masses from the Asian summer monsoon anticyclone (ASMA) into the extratropical lower stratosphere and their chemical evolution. For that reason, we developed a method to identify and track the air masses exported from the monsoon. This method is based on the anomalously low potential vorticity (PV) of these air masses (tropospheric low–PV cutoffs) compared to the lower-stratosphere, and uses trajectory calculations and chemical fields from the Chemical Lagrangian Model of the Stratosphere (CLaMS). The results show evidence for frequent summertime transport from the monsoon anticyclone to mid-latitudes over the North Pacific, even reaching high latitude regions of Siberia and Alaska. Most of the low–PV cutoffs related to air masses exported from the ASMA have lifetimes shorter than one week (about 90 %) and sizes smaller than 1 percent of the northern hemisphere (NH) area. The chemical composition of these air masses is characterised by carbon monoxide, ozone and water vapour mixing ratios at an intermediate range between values typical for the monsoon anticyclone and the lower-stratosphere. The chemical evolution during transport within these low–PV cutoffs shows a gradual change from characteristics of the monsoon anticyclone to characteristics of the lower stratospheric background during about one week, indicating continuous mixing with the background atmosphere.

2015 ◽  
Vol 15 (23) ◽  
pp. 34765-34812
Author(s):  
S. Müller ◽  
P. Hoor ◽  
H. Bozem ◽  
E. Gute ◽  
B. Vogel ◽  
...  

Abstract. The transport of air masses originating from the Asian monsoon anticyclone into the extratropical upper troposphere and lower stratosphere (Ex-UTLS) above potential temperatures Θ = 380 K was identified during the HALO aircraft mission TACTS in August and September 2012. In-situ measurements of CO, O3 and N2O during TACTS Flight 2 on the 30 August 2012 show the irreversible mixing of aged with younger (originating from the troposphere) stratospheric air masses within the Ex-UTLS. Backward trajectories calculated with the trajetory module of the CLaMS model indicate that these tropospherically affected air masses originate from the Asian monsoon anticyclone. From the monsoon circulation region these air masses are quasi-isentropically transported above Θ = 380 K into the Ex-UTLS where they subsequently mix with stratospheric air masses. The overall trace gas distribution measured during TACTS shows that this transport pathway has a significant impact on the Ex-UTLS during boreal summer and autumn. This leads to an intensification of the tropospheric influence on the Ex-UTLS with ΔΘ > 30 K (relative to the tropopause) within three weeks during the TACTS mission. In the same time period a weakening of the tropospheric influence on the lowermost stratosphere (LMS) is determined. Therefore, the study shows that the transport of air masses originating from the Asian summer monsoon region within the lower stratosphere above Θ = 380 K is of major importance for the change of the chemical composition of the Ex-UTLS from summer to autumn.


2015 ◽  
Vol 15 (22) ◽  
pp. 13145-13159 ◽  
Author(s):  
F. Ploeger ◽  
C. Gottschling ◽  
S. Griessbach ◽  
J.-U. Grooß ◽  
G. Guenther ◽  
...  

Abstract. The Asian summer monsoon provides an important pathway of tropospheric source gases and pollution into the lower stratosphere. This transport is characterized by deep convection and steady upwelling, combined with confinement inside a large-scale anticyclonic circulation in the upper troposphere and lower stratosphere (UTLS). In this paper, we show that a barrier to horizontal transport along the 380 K isentrope in the monsoon anticyclone can be determined from a local maximum in the gradient of potential vorticity (PV), following methods developed for the polar vortex (e.g., Nash et al., 1996). The monsoon anticyclone is dynamically highly variable and the maximum in the PV gradient is weak, such that additional constraints are needed (e.g., time averaging). Nevertheless, PV contours in the monsoon anticyclone agree well with contours of trace gas mixing ratios (CO, O3) and mean age from model simulations with a Lagrangian chemistry transport model (CLaMS) and satellite observations from the Microwave Limb Sounder (MLS) instrument. Hence, the PV-based transport barrier reflects the separation between air inside the core of the anticyclone and the background atmosphere well. For the summer season 2011 we find an average PV value of 3.6 PVU for the transport barrier in the anticyclone on the 380 K isentrope.


2011 ◽  
Vol 11 (2) ◽  
pp. 503-518 ◽  
Author(s):  
A. K. Baker ◽  
T. J. Schuck ◽  
F. Slemr ◽  
P. van Velthoven ◽  
A. Zahn ◽  
...  

Abstract. Between April and December 2008 the CARIBIC commercial aircraft conducted monthly measurement flights between Frankfurt, Germany and Chennai, India. These flights covered the period of the Asian summer monsoon (June–September), during which enhancements in a number of atmospheric species were observed in the upper troposphere over southwestern Asia. In addition to in situ measurements of trace gases and aerosols, whole air samples were collected during the flights, and these were subsequently analyzed for a suite of trace gases that included a number of C2–C8 non-methane hydrocarbons. Non-methane hydrocarbons are relatively short-lived compounds and the large enhancements in their mixing ratios in the upper troposphere over southwestern Asia during the monsoon, sometimes more than double their spring and fall means, provides qualitative evidence for the influence of convectively uplifted boundary layer air. The particularly large enhancements of the combustion tracers benzene and ethyne, along with the similarity of their ratios with carbon monoxide and emission ratios from the burning of household biofuels, indicate a strong influence of biofuel burning to NMHC emissions in this region. Conversely, the ratios of ethane and propane to carbon monoxide, along with the ratio between i-butane and n-butane, indicate a significant source of these compounds from the use of fossil fuels, and comparison to previous campaigns suggests that this source could be increasing. Photochemical aging patterns of NMHCs showed that the CARIBIC samples were collected in two distinctly different regions of the monsoon circulation: a southern region where air masses had been recently influenced by low level contact and a northern region, where air parcels had spent substantial time in transit in the upper troposphere before being probed. Estimates of age using ratios of individual NMHCs have ranges of 3–6 days in the south and 9–12 days in the north.


2015 ◽  
Vol 15 (5) ◽  
pp. 6967-7018 ◽  
Author(s):  
A. Rauthe-Schöch ◽  
A. K. Baker ◽  
T. J. Schuck ◽  
C. A. M. Brenninkmeijer ◽  
A. Zahn ◽  
...  

Abstract. The CARIBIC (Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instrument Container) passenger aircraft observatory performed in situ measurements at 10–12 km altitude in the South Asian summer monsoon anticyclone between June and September 2008. These measurements enable us to investigate this atmospheric region, which so far has mostly been observed from satellites, using the broad suite of trace gases and aerosols measured by CARIBIC. Elevated levels of a range of atmospheric pollutants were recorded e.g. carbon monoxide, total reactive nitrogen oxides, aerosol particles and several volatile organic compounds. The measurements provide detailed information about the chemical composition of air in different parts of the monsoon anticyclone, particularly of ozone precursors. While covering a range of 3500 km inside the monsoon anticyclone, CARIBIC observations show remarkable consistency, i.e. with regular latitudinal patterns of trace gases during the entire monsoon period. Trajectory calculations indicate that these air masses originated mainly from South Asia and Mainland Southeast Asia. Using the CARIBIC trace gas and aerosol measurements in combination with the Lagrangian particle dispersion model FLEXPART we investigated the characteristics of monsoon outflow and the chemical evolution of air masses during transport. Estimated photochemical ages of the air were found to agree well with transport times from a source region east of 95° E. The photochemical ages of the air in the southern part of the monsoon anticyclone were consistently younger (less than 7 days) and the air masses mostly in an ozone forming chemical regime. In its northern part the air masses were older (up to 13 days) and had unclear ozone formation or destruction potential. Based on analysis of forward trajectories several receptor regions were identified. In addition to predominantly westward transport, we found evidence for efficient transport (within 10 days) to the Pacific and North America, particularly during June and September, and also of cross-tropopause exchange, which was strongest during June and July. Westward transport to Africa and further to the Mediterranean was the main pathway during July.


2021 ◽  
Author(s):  
Toru Terao ◽  
Fumie Murata ◽  
Yusuke Yamane ◽  
Masashi Kiguchi ◽  
Azusa Fukushima ◽  
...  

<p>The Asian summer monsoon system is the strongest monsoon circulation on the Earth. A huge reversal of meridional temperature gradient develops over the area covering the hemispheric region due to strong diabatic heating associated with convective activities. Vigorous conventions reach the upper troposphere providing a great amount of high potential temperature airmass. This high potential temperature air mass originates from the high equivalent potential temperature airmass accumulated in the lower troposphere over the Asian monsoon region. The highest potential temperature tropospheric air mass is observed only over the Asian summer monsoon region. To get a total view of the Asian summer monsoon circulation system, we focused on the mass budget of the upper-tropospheric air mass with a potential temperature between 355K to 370K. The non-conservative change of the air mass corresponds with the diabatic heating due to the convective activities, and the diabatic cooling due to the radiative process. To analyze the radiative cooling process that takes place in the upper troposphere, we utilized hourly GSMaP pixel values to detect rain-free pixels of the ERA5 dataset. We calculated the non-conservative air mass tendency over the rain-free pixels on a daily and 0.5 degrees spatio-temporal scale. We found the radiative equilibrium amount of high potential temperature air mass and the Newtonian cooling process with a relaxation time scale of 6 to 7 days. We will show the quantitative estimates of the total convective process of the Asian summer monsoon system associated with the convective clouds and radiative processes, through the mass budget of 355K-370K potential temperature air mass. We will further show results of the evaluation of the accuracy of TRMM and GPM products using our high-resolution tipping bucket raingauge network distributed over the Northeastern Indian subcontinent.</p>


2020 ◽  
Author(s):  
Xiaoning Xie ◽  
Gunnar Myhre ◽  
Xiaodong Liu ◽  
Xinzhou Li ◽  
Zhengguo Shi ◽  
...  

Abstract. Black carbon (BC) aerosols emitted from natural and anthropogenic sources induce positive radiative forcing and global warming, which in turn significantly affect the Asian summer monsoon (ASM). However, many aspects of the BC effect on ASM remain elusive and largely inconsistent among previous studies, which is strongly dependent on different low-level thermal feedbacks over the Asian continent and the surrounding ocean. This study examines the response of ASM to BC forcing in comparison with the effect of doubled greenhouse gases (GHGs) by analyzing the Precipitation Driver Response Model Intercomparison Project (PDRMIP) simulations under an extreme high BC level (10 times modern global BC emissions or concentrations, labeled by BC × 10) from nine global climate models (GCMs). The results show that although BC and GHGs both enhance the ASM precipitation minus evaporation (P–E) (a 13.6 % increase for BC forcing and 12.1 % for GHGs from the nine-model ensemble, respectively), there exists a much larger uncertainty in changes in ASM P–E induced by BC than by GHGs. The summer P–E is increased by 7.7 % to 15.3 % due to these two forcings over three sub-regions including East Asian, South Asian, and western North Pacific monsoon regions. Further analysis of moisture budget reveals distinct mechanisms controlling the increases in ASM P–E induced by BC and GHGs. The change in ASM P–E by BC is dominated by the dynamic effect due to the enhanced large-scale monsoon circulation, whereas the GHG-induced change is dominated by the thermodynamic effect through increasing atmospheric water vapor. Radiative forcing of BC significantly increases the upper-level atmospheric temperature over the Asian region to enhance the upper-level meridional land-sea thermal gradient (MLOTG), resulting in a northward shift of the upper-level subtropical westerly jet and an enhancement of the low-level monsoon circulation; whereas radiative forcing of GHGs significantly increases the tropical upper-level temperature, which reduces the upper-level MLOTG and suppresses the low-level monsoonal circulation. Hence, our results indicate a different mechanism of BC climate effects under the extreme high BC level, that BC forcing significantly enhances the upper-level atmospheric temperature over the Asian region, determining ASM changes, instead of low-level thermal feedbacks as indicated by previous studies.


2016 ◽  
Vol 16 (13) ◽  
pp. 8389-8403 ◽  
Author(s):  
Jörn Ungermann ◽  
Mandfred Ern ◽  
Martin Kaufmann ◽  
Rolf Müller ◽  
Reinhold Spang ◽  
...  

Abstract. This paper presents an analysis of trace gases in the Asian summer monsoon (ASM) region on the basis of observations by the CRISTA infrared limb sounder taken in low-earth orbit in August 1997. The spatially highly resolved measurements of peroxyacetyl nitrate (PAN) and O3 allow a detailed analysis of an eddy-shedding event of the ASM anticyclone. We identify enhanced PAN volume mixing ratios (VMRs) within the main anticyclone and within the eddy, which are suitable as a tracer for polluted air originating in India and China. Plotting the retrieved PAN VMRs against potential vorticity (PV) and potential temperature reveals that the PV value at which the PAN VMRs exhibit the strongest decrease with respect to PV increases with potential temperature. These PV values might be used to identify the extent of the ASM. Using temperature values also derived from CRISTA measurements, we also computed the location of the thermal tropopause according to the WMO criterion and find that it confines the PAN anomaly vertically within the main ASM anticyclone. In contrast, the shed eddy exhibits enhanced PAN VMRs for 1 to 2 km above the thermal tropopause. Using the relationship between PAN as a tropospheric tracer and O3 as a stratospheric tracer to identify mixed air parcels, we further found the anticyclone to contain few such air parcels, whereas the region between the anticyclone and the eddy as well as the eddy itself contains many mixed air parcels. In combination, this implies that while the anticyclone confines polluted air masses well, eddy shedding provides a very rapid horizontal transport pathway of Asian pollution into the extratropical lowermost stratosphere with a timescale of only a few days.


Sign in / Sign up

Export Citation Format

Share Document