scholarly journals Simulation of the climate impact of Mt. Pinatubo eruption using ECHAM5 – Part 1: Sensitivity to the modes of atmospheric circulation and boundary conditions

2008 ◽  
Vol 8 (3) ◽  
pp. 9209-9238
Author(s):  
M. A. Thomas ◽  
C. Timmreck ◽  
M. A. Giorgetta ◽  
H.-F. Graf ◽  
G. Stenchikov

Abstract. Large volcanic eruptions and their subsequent climate responses are relatively short-lived perturbations to the climate system. They provide an excellent opportunity to understand the response of the climate system to a global radiative forcing and to assess the ability of our climate models to simulate such large perturbations. The eruption of Mt. Pinatubo in Philippines in June 1991 was one of the strongest volcanic eruptions in the 20th century and this well observed eruption can serve as an important case study to understand the subsequent weather and climate changes. In this paper, the most comprehensive simulations to date of the climate impact of Mt. Pinatubo eruption are carried out with prescribed volcanic aerosols including observed SSTs, QBO and volcanically induced ozone anomalies. This is also the first attempt to include all the known factors for the simulation of such an experiment. Here, the climate response is evaluated under different boundary conditions including one at a time, thereby, investigating the radiative and dynamical responses to individual and combined forcings by observed SSTs, QBO and volcanic effects. Two ensembles of ten members each, for unperturbed and volcanically perturbed conditions were carried out using the middle atmosphere configuration of ECHAM5 model. Our results show that the pure aerosol response in lower stratospheric temperature is insensitive to the boundary conditions in the tropics and does not show some observed features which results from the boundary conditions. To simulate realistically the lower stratospheric temperature response, one must include all the known factors. The pure QBO and ocean responses are simulated consistent with earlier studies. The dynamical response manifested as the winter warming pattern is not simulated in the ensemble mean of the experiments. Our analysis also shows that the response to El Niño conditions is very strong in the model and that it partially masks the effects due to volcanic forcing.

2009 ◽  
Vol 9 (2) ◽  
pp. 757-769 ◽  
Author(s):  
M. A. Thomas ◽  
C. Timmreck ◽  
M. A. Giorgetta ◽  
H.-F. Graf ◽  
G. Stenchikov

Abstract. The eruption of Mt. Pinatubo in the Philippines in June 1991 was one of the strongest volcanic eruptions in the 20th century and this well observed eruption can serve as an important case study to understand the subsequent weather and climate changes. In this paper, the most comprehensive simulations to date of the climate impact of Mt. Pinatubo eruption are carried out with prescribed volcanic aerosols including observed SSTs, QBO and volcanically induced ozone anomalies. This is also the first attempt to include all the known factors for the simulation of such an experiment. Here, the climate response is evaluated under different boundary conditions including one at a time, thereby, investigating the radiative and dynamical responses to individual and combined forcings by observed SSTs, QBO and volcanic effects. Two ensembles of ten members each, for unperturbed and volcanically perturbed conditions were carried out using the middle atmosphere configuration of ECHAM5 general circulation model. Our results show that the simulated climate response that may arise solely from aerosol forcing in lower stratospheric temperature is insensitive to the boundary conditions in the tropics and does not show some observed features such as the temperature signature of the QBO phases. Also, statistically significant positive anomalies in the high latitudes in NH winter of 1991/92 seen in our model simulations with prescribed observed SST and QBO phases as boundary conditions are consistent with the observations. To simulate realistically the lower stratospheric temperature response, one must include all the known factors. The pure QBO and ocean signatures in lower stratospheric temperature are simulated consistently with earlier studies. The indirect effect of the volcanic aerosols manifested as the winter warming pattern is not simulated in the ensemble mean of the experiments. Our analysis also shows that the response to El Niño conditions is very strong in the model and that it partially masks the effects due to volcanic forcing.


2012 ◽  
Vol 3 (1) ◽  
pp. 279-323 ◽  
Author(s):  
D. Rothenberg ◽  
N. Mahowald ◽  
K. Lindsay ◽  
S. C. Doney ◽  
J. K. Moore ◽  
...  

Abstract. Volcanic eruptions induce a dynamical response in the climate system characterized by short-term, global reductions in both surface temperature and precipitation, as well as a response in biogeochemistry. The available observations of these responses to volcanic eruptions, such as to Pinatubo, provide a valuable method to compare against model simulations. Here, the Community Climate System Model Version 3 (CCSM3) reproduces the physical climate response to volcanic eruptions in a realistic way, as compared to direct observations from the 1991 eruption of Mount Pinatubo. The model biogeochemical response to eruptions is smaller in magnitude than observed, but because of the lack observations, it is not clear why or where the modeled carbon response is not strong enough. Comparison to other models suggests that this model response is much weaker in the tropical land; however the precipitation response in other models is not accurate, suggesting that other models could be getting the right response for the wrong reason. The underestimated carbon response in the model compared to observations could also be due to the ash and lava input of biogeochemical important species to the ocean, which are not included in the simulation. A statistically significant reduction in the simulated carbon dioxide growth rate is seen at the 90% level in the average of 12 large eruptions over the period 1870–2000, and the net uptake of carbon is primarily concentrated in the tropics with large spatial variability. In addition, a method for computing the volcanic response in model output without using a control ensemble is tested against a traditional methodology using two separate ensembles of runs; the method is found to produce similar results. These results suggest that not only is simulating volcanoes a good test of coupled carbon-climate models, but also that this test can be performed without a control simulation in cases where it is not practical to run separate ensembles with and without volcanic eruptions.


2009 ◽  
Vol 9 (9) ◽  
pp. 3001-3009 ◽  
Author(s):  
M. A. Thomas ◽  
M. A. Giorgetta ◽  
C. Timmreck ◽  
H.-F. Graf ◽  
G. Stenchikov

Abstract. The sensitivity of the climate impact of Mt. Pinatubo eruption in the tropics and extratropics to different QBO phases is investigated. Mt. Pinatubo erupted in June 1991 during the easterly phase of the QBO at 30 hPa and the phase change to westerly took place in August 1992. Here, the consequences are analyzed if the QBO phase had been in the opposite phase during the eruption of Mt. Pinatubo. Hence, in this study, simulations are carried out using the middle atmosphere configuration of ECHAM5 general circulation model for two cases – one with the observed QBO phase and the other with the opposite QBO phase. The response of temperature and geopotential height in the lower stratosphere is evaluated for the following cases – (1) when only the effects of the QBO are included and (2) when the effects of aerosols, QBO and SSTs (combined response) are included. The tropical QBO signature in the lower stratospheric temperature is well captured in the pure QBO responses and in the combined (aerosol + ocean + QBO) responses. The response of the extratropical atmosphere to the QBO during the second winter after the eruption is captured realistically in the case of the combined forcing showing a strengthening of the polar vortex when the QBO is in its westerly phase and a warm, weak polar vortex in the easterly QBO phase. The vortex is disturbed during the first winter irrespective of the QBO phases in the combined responses and this may be due to the strong influences of El Niño during the first winters after eruption. However, the pure QBO experiments do not realistically reproduce a strengthening of the polar vortex in the westerly QBO phase, even though below normal temperatures in the high latitudes are seen in October-November-December months when the opposite QBO phase is prescribed instead of the December-January-February winter months used here for averaging.


2012 ◽  
Vol 3 (2) ◽  
pp. 121-136 ◽  
Author(s):  
D. Rothenberg ◽  
N. Mahowald ◽  
K. Lindsay ◽  
S. C. Doney ◽  
J. K. Moore ◽  
...  

Abstract. Volcanic eruptions induce a dynamical response in the climate system characterized by short-term global reductions in both surface temperature and precipitation, as well as a response in biogeochemistry. The available observations of these responses to volcanic eruptions, such as to Pinatubo, provide a valuable method to compare against model simulations. Here, the Community Climate System Model Version 3 (CCSM3) reproduces the physical climate response to volcanic eruptions in a realistic way, as compared to direct observations from the 1991 eruption of Mount Pinatubo. The model's biogeochemical response to eruptions is smaller in magnitude than observed, but because of the lack of observations, it is not clear why or where the modeled carbon response is not strong enough. Comparison to other models suggests that this model response is much weaker over tropical land; however, the precipitation response in other models is not accurate, suggesting that other models could be getting the right response for the wrong reason. The underestimated carbon response in the model compared to observations could also be due to the ash and lava input of biogeochemically important species to the ocean, which are not included in the simulation. A statistically significant reduction in the simulated carbon dioxide growth rate is seen at the 90% level in the average of 12 large eruptions over the period 1870–2000, and the net uptake of carbon is primarily concentrated in the tropics, with large spatial variability. In addition, a method for computing the volcanic response in model output without using a control ensemble is tested against a traditional methodology using two separate ensembles of runs; the method is found to produce similar results in the global average. These results suggest that not only is simulating volcanoes a good test of coupled carbon–climate models, but also that this test can be performed without a control simulation in cases where it is not practical to run separate ensembles with and without volcanic eruptions.


2021 ◽  
Author(s):  
Rafael Castro ◽  
Tushar Mittal ◽  
Stephen Self

<p>The 1883 Krakatau eruption is one of the most well-known historical volcanic eruptions due to its significant global climate impact as well as first recorded observations of various aerosol associated optical and physical phenomena. Although much work has been done on the former by comparison of global climate model predictions/ simulations with instrumental and proxy climate records, the latter has surprisingly not been studied in similar detail. In particular, there is a wealth of observations of vivid red sunsets, blue suns, and other similar features, that can be used to analyze the spatio-temporal dispersal of volcanic aerosols in summer to winter 1883. Thus, aerosol cloud dispersal after the Krakatau eruption can be estimated, bolstered by aerosol cloud behavior as monitored by satellite-based instrument observations after the 1991 Pinatubo eruption. This is one of a handful of large historic eruptions where this analysis can be done (using non-climate proxy methods). In this study, we model particle trajectories of the Krakatau eruption cloud using the Hysplit trajectory model and compare our results with our compiled observational dataset (principally using Verbeek 1884, the Royal Society report, and Kiessling 1884).</p><p>In particular, we explore the effect of different atmospheric states - the quasi-biennial oscillation (QBO) which impacts zonal movement of the stratospheric volcanic plume - to estimate the phase of the QBO in 1883 required for a fast-moving westward cloud. Since this alone is unable to match the observed latitudinal spread of the aerosols, we then explore the impact of an  umbrella cloud (2000 km diameter) that almost certainly formed during such a large eruption. A large umbrella cloud, spreading over ~18 degrees within the duration of the climax of the eruption (6-8 hours), can lead to much quicker latitudinal spread than a point source (vent). We will discuss the results of the combined model (umbrella cloud and correct QBO phase) with historical accounts and observations, as well as previous work on the 1991 Pinatubo eruption. We also consider the likely impacts of water on aerosol concentrations and the relevance of this process for eruptions with possible significant seawater interactions, like Krakatau. We posit that the role of umbrella clouds is an under-appreciated, but significant, process for beginning to model the climatic impacts of large volcanic eruptions.</p>


2016 ◽  
Vol 16 (11) ◽  
pp. 7451-7468 ◽  
Author(s):  
Borgar Aamaas ◽  
Terje K. Berntsen ◽  
Jan S. Fuglestvedt ◽  
Keith P. Shine ◽  
Nicolas Bellouin

Abstract. For short-lived climate forcers (SLCFs), the impact of emissions depends on where and when the emissions take place. Comprehensive new calculations of various emission metrics for SLCFs are presented based on radiative forcing (RF) values calculated in four different (chemical-transport or coupled chemistry–climate) models. We distinguish between emissions during summer (May–October) and winter (November–April) for emissions in Europe and East Asia, as well as from the global shipping sector and global emissions. The species included in this study are aerosols and aerosol precursors (BC, OC, SO2, NH3), as well as ozone precursors (NOx, CO, VOCs), which also influence aerosols to a lesser degree. Emission metrics for global climate responses of these emissions, as well as for CH4, have been calculated using global warming potential (GWP) and global temperature change potential (GTP), based on dedicated RF simulations by four global models. The emission metrics include indirect cloud effects of aerosols and the semi-direct forcing for BC. In addition to the standard emission metrics for pulse and sustained emissions, we have also calculated a new emission metric designed for an emission profile consisting of a ramping period of 15 years followed by sustained emissions, which is more appropriate for a gradual implementation of mitigation policies.For the aerosols, the emission metric values are larger in magnitude for emissions in Europe than East Asia and for summer than winter. A variation is also observed for the ozone precursors, with largest values for emissions in East Asia and winter for CO and in Europe and summer for VOCs. In general, the variations between the emission metrics derived from different models are larger than the variations between regions and seasons, but the regional and seasonal variations for the best estimate also hold for most of the models individually. Further, the estimated climate impact of an illustrative mitigation policy package is robust even when accounting for the fact that the magnitude of emission metrics for different species in a given model is correlated. For the ramping emission metrics, the values are generally larger than for pulse or sustained emissions, which holds for all SLCFs. For SLCFs mitigation policies, the dependency of metric values on the region and season of emission should be considered.


2011 ◽  
Vol 7 (4) ◽  
pp. 1439-1455 ◽  
Author(s):  
J. Mignot ◽  
M. Khodri ◽  
C. Frankignoul ◽  
J. Servonnat

Abstract. The oceanic response to volcanic eruptions over the last 1000 years is investigated with a focus on the North Atlantic Ocean, using a fully coupled AOGCM forced by a realistic time series of volcanic eruptions, total solar irradiance (TSI) and atmospheric greenhouse gases concentration. The model simulates little response to TSI variations but a strong and long-lasting thermal and dynamical oceanic adjustment to volcanic forcing, which is shown to be a function of the time period of the volcanic eruptions. The thermal response consists of a fast tropical cooling due to the radiative forcing by the volcanic eruptions, followed by a penetration of this cooling in the subtropical ocean interior one to five years after the eruption, and propagation of the anomalies toward the high latitudes. The oceanic circulation first adjusts rapidly to low latitude anomalous wind stress induced by the strong cooling. The Atlantic Meridional Overturning Circulation (AMOC) shows a significant intensification 5 to 10 years after the eruptions of the period post-1400 A.D., in response to anomalous atmospheric momentum forcing, and a slight weakening in the following decade. In response to the stronger eruptions occurring between 1100 and 1300, the AMOC shows no intensification and a stronger reduction after 10 years. This study thus stresses the diversity of AMOC response to volcanic eruptions in climate models and discusses possible explanations.


2005 ◽  
Vol 5 (5) ◽  
pp. 9207-9248 ◽  
Author(s):  
W. Steinbrecht ◽  
B. Haßler ◽  
C. Brühl ◽  
M. Dameris ◽  
M. A. Giorgetta ◽  
...  

Abstract. We report results from a multiple linear regression analysis of long-term total ozone observations (1979 to 2002, by TOMS/SBUV), of temperature reanalyses (1958 to 2002, NCEP), and of two chemistry-climate model simulations (1960 to 1999, by ECHAM4.L39(DLR)/CHEM (=E39/C), and MAECHAM4-CHEM). The model runs are transient experiments, where observed sea surface temperatures, increasing source gas concentrations (CO2, CFCs, CH4, N2O, NOx), 11-year solar cycle, volcanic aerosols and the quasi-biennial oscillation (QBO) are all accounted for. MAECHAM4-CHEM covers the atmosphere from the surface up to 0.01 hPa (≈80 km). For a proper representation of middle atmosphere (MA) dynamics, it includes a parametrization for momentum deposition by dissipating gravity wave spectra. E39/C, on the other hand, has its top layer centered at 10 hPa (≈30 km). It is targeted on processes near the tropopause, and has more levels in this region. Both models reproduce the observed amplitudes and much of the observed low-latitude patterns of the various modes of interannual variability, MAECHAM4-CHEM somewhat better than E39/C. Total ozone and lower stratospheric temperature show similar patterns. Main contributions to the interannual variations of total ozone and lower stratospheric temperature at 50 hPa come from a linear trend (up to −30 Dobson Units (DU) per decade, or −1.5 K/decade), the QBO (up to 25 DU, or 2.5 K peak to peak), the intensity of the polar vortices (up to 50 DU, or 5 K peak to peak), and from tropospheric weather (up to 30 DU, or 3 K peak to peak). Smaller variations are related to the 11-year solar cycle (generally less than 25 DU, or 2.5 K), and to ENSO (up to 15 DU, or 1.5 K). Volcanic eruptions have resulted in sporadic changes (up to −40 DU, or +3 K). Most stratospheric variations are connected to the troposphere, both in observations and simulations. At low latitudes, patterns are zonally symmetric. At higher latitudes, however, strong, zonally non-symmetric signals are found close to the Aleutian Islands or south of Australia. Such asymmetric features appear in the model runs as well, but often at different longitudes than in the observations. The results point to a key role of the zonally asymmetric Aleutian (or Australian) stratospheric anti-cyclones for interannual variations at high- latitudes, and for coupling between polar vortex strength, QBO, 11-year solar cycle and ENSO.


2011 ◽  
Vol 8 (2) ◽  
pp. 2957-3007 ◽  
Author(s):  
T. L. Frölicher ◽  
F. Joos ◽  
C. C. Raible

Abstract. Impacts of low-latitude, explosive volcanic eruptions on climate and the carbon cycle are quantified by forcing a comprehensive, fully coupled carbon cycle-climate model with pulse-like stratospheric sulfur release. The model represents the radiative and dynamical response of the climate system to volcanic eruptions and simulates a decrease of global and regional atmospheric surface temperature, regionally distinct changes in precipitation, a positive phase of the North Atlantic Oscillation, and a decrease in atmospheric CO2 after volcanic eruptions. The volcanic-induced cooling reduces overturning rates in tropical soils, which dominates over reduced litter input due to soil moisture decrease, resulting in higher land carbon inventories for several decades. The perturbation in the ocean carbon inventory changes sign from an initially weak carbon sink to a carbon source. Positive carbon and negative temperature anomalies in subsurface waters last up to several decades. The multi-decadal decrease in atmospheric CO2 yields an additional radiative forcing that amplifies the cooling and perturbs the Earth System on much longer time scales than the atmospheric residence time of volcanic aerosols. In addition, century-scale global warming simulations with and without volcanic eruptions over the historical period show that the ocean integrates volcanic radiative cooling and responds for different physical and biogeochemical parameters such as steric sea level or dissolved oxygen. Results from a suite of sensitivity simulations with different amounts of sulfur released and from global warming simulations show that the carbon cycle-climate sensitivity γ, expressed as change in atmospheric CO2 per unit change in global mean surface temperature, depends on the perturbation. On decadal time scales, modeled γ is several times larger for a Pinatubo-like eruption than for the industrial period and for a high emission, 21st century scenario.


2021 ◽  
Author(s):  
Thomas Aubry ◽  
Anja Schmidt ◽  
Alix Harrow ◽  
Jeremy Walton ◽  
Jane Mulcahy ◽  
...  

<p>Reconstructions of volcanic aerosol forcing and its climatic impacts are undermined by uncertainties in both the models used to build these reconstructions as well as the proxy and observational records used to constrain those models. Reducing these uncertainties has been a priority and in particular, several modelling groups have developed interactive stratospheric aerosol models. Provided with an initial volcanic injection of sulfur dioxide, these models can interactively simulate the life cycle and optical properties of sulfate aerosols, and their effects on climate. In contrast, most climate models that took part in the Coupled Model Intercomparison Project Phase 5 and 6 (CMIP6) directly prescribe perturbations in atmospheric optical properties associated with an eruption. However, before the satellite era, the volcanic forcing dataset used for CMIP6 mostly relies on a relatively simple aerosol model and a volcanic sulfur inventory derived from ice-cores, both of which have substantial associated uncertainties.</p><p>In this study, we produced a new set of historical simulations using the UK Earth System Model UKESM1, with interactive stratospheric aerosol capability (referred to as interactive runs hereafter) instead of directly prescribing the CMIP6 volcanic forcing dataset as was done for CMIP6 (standard runs, hereafter). We used one of the most recent volcanic sulfur inventories as input for the interactive runs, in which aerosol properties are consistent with the model chemistry, microphysics and atmospheric components. We analyzed how the stratospheric aerosol optical depth, the radiative forcing and the climate response to volcanic eruptions differed between interactive and standard runs, and how these compare to observations and proxy records. In particular, we investigate in detail the differences in the response to the large-magnitude Krakatoa 1883 eruption between the two sets of runs. We also discuss differences for the 1979-2015 period where the forcing data in standard runs is directly constrained from satellite observations. Our results shed new light on uncertainties affecting the reconstruction of past volcanic forcing and highlight some of the benefits and disadvantages of using interactive stratospheric aerosol capabilities instead of a unique prescribed volcanic forcing dataset in CMIP’s historical runs.</p>


Sign in / Sign up

Export Citation Format

Share Document